Supporting Information

Enhanced peroxydisulfate electrochemiluminescence for dopamine biosensing based on Au nanoparticles decorated reduced graphene oxide

Yuting Yan^a, Qian Liu^b, Kun Wang^{a*}, Ling Jiang^a, Xingwang Yang^a, Jing Qian^a,

Xiaoya Dong^a, Baijing Qiu^a

^aKey Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China; ^bSchool of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China

^{*}Corresponding author. Tel.: +86 511 88791800; fax: +86 511 88791708. E-mail address: wangkun@ujs.edu.cn

Fig. S1 (A) ECL-potential curves of the Au NPs-RGO/GCE in 0.1 M PBS (pH 7.4) containing different $K_2S_2O_8$ concentration. (B) Effect of the $K_2S_2O_8$ concentration versus ECL intensity. (C) ECL-potential curves of the Au NPs-RGO/GCE in 0.1 M PBS containing 0.05 M $K_2S_2O_8$ with different pH values. (D) Effect of the pH value versus the ECL intensity.

Table S1

Method	Linear	Detection	Correlation
	range	limit	coeffcient
ECL ⁴⁰	$0.5\sim70\mu\mathrm{M}$	0.5 μM	0.992
ECL ⁴¹	$0.5 \sim 19 \mu \mathrm{M}$	$0.1\mu\mathrm{M}$	0.992
ECL ¹²	$2.5\sim 47.5\mu\mathrm{M}$	—	—
ECL ⁴²	$0.05 \sim 10 \mu \mathrm{M}$	$0.012 \mu\mathrm{M}$	0.999
Present work	$0.02 \sim 40 \mu \mathrm{M}$	$0.0067 \mu \mathrm{M}$	0.996

The analytical performances for DA detection by various methods.

Table S2

Sample	Detected	Added	Total found	Recovery	RSD
number	(µM)	(µM)	(µM)	(%)	(% n = 3)
1	1.3	5.0	6.4	101.5	1.7
2	1.8	5.0	6.6	97.0	2.1
3	2.1	5.0	6.9	97.2	1.4

Determination of DA in human plasma sample.

References

- 12 L. L. Li, H. Y. Liu, Y. Y. Shen, J. R. Zhang and J. J. Zhu, Anal. Chem., 2011, 83, 661-685.
- 40 X. Liu, L. X. Cheng, J. P. Lei and H. X. Ju, Analyst, 2008, 133, 1161-1163.
- 41 R. Cui, Y. P. Gu, L. Bao, J. Y. Zhao, B. P. Qi, Z. L. Zhang, Z. X. Xie and D. W. Pang, *Anal. Chem.*, 2012, **84**, 8932–8935.
- 42 F. R. Sun, F. F. Chen, W. J. Fei, L. Sun and Y. Wu, Sensor. Actuat. B, 2012, 706, 166-167.