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1 Theoretical model

To simulate the system, we construct a forward model relating the object [defined in terms
of the position-dependent coherent scatter form factor f(ro, q)] and measurement y(E, t, rd)
spaces. Here rd are the positions of the detector pixels relative to the source and ro is the
object position, q is the momentum transfer, and t is the time. Because of the large design
space associated with SICSI, we do not derive here a general model; instead, we describe the
experimental configuration discussed in the manuscript. Namely, we model a modulated
fan beam composed of a series of periodically-spaced pencil beams oriented along a line.
An x-ray source is located at the origin, and a single, energy-sensitive detector pixel is
located at rd = (xd, zd).

The differential cross section describing the scatter of an x-ray with energy E into a
unit solid angle is given by

dσcoh(E)

dΩ
=
r2
e

2

[
1 + cos(θ)2

]
f(q). (1)

Here re is the classical electron radius and f(q) is the square of the coherent scatter form
factor, which modifies the Thompson cross section of a free electron by taking into account
the effect of nearby scatters. The intensity of the scattered x-rays at a given detector pixel
is therefore given as

y(E, t, rd) =

∫
dx dy dz dq nT (E, ro, rd)
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dΩ
∆ΩΦ(E, x, y, z)δ

[
E − hcq

sin(θ/2)

]
. (2)

Here θ = cos−1(rd · ro/|rd||ro|) is the scatter angle, Φ(E, x, y, z) = φ(E)c(xd/z, yd/z)
is the structured incident illumination, n is the density of scatterers, and T (E, ro, rd)
is the transmission along a path connecting the source, ro and rd. For ease of analytic
evaluation, we choose the coded aperture pattern to be a train of delta functions c(x, y) =∑

j δ(x − xj)δ(y). We note that one can easily model the effects of using finite-sized
apertures by integrating over several such codes with different relative shifts. In addition,
we make the assumption that the transmission is roughly uniform across all paths and
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equal to To. While this approximation holds for uniform and optically thin objects, one
can correct for spatially-dependent attenuation by simultaneously recording a tomographic
transmission image.

Looking at the impulse response when f(ro, q) = foδ[r − ro(t)]δ(q − qo) yields a mea-
surement

y(E, t, rd) =
∑
j

nTo foδ
(xjzo

d
− [xo − vxt]

)
δ

(
E − hcqo

sin[θj/2]

)
L(θj)φ(E), (3)

where θj = θ[(xjzo/d, 0, zo), rd] and L(θj) =
(
1 + cos(θj)

2
)

∆Ω(θj). One can see from this
expression that zo, xo, and qo are encoded in the temporal modulation frequency, absolute
temporal location of the signal, and slope of the resulting curve in E-t space, respectively.

We descritize the forward model by considering rectangular bins in the detector inte-
gration time and pixel size, and assume a Gaussian energy response of the detector (which
represents an approximation to the true response of an energy-sensitive detector). This
yields

ym =

∫
dE dt drd y(E, t, rd)rect

(
t− tm

∆t

)
rect

(
xd − xm

∆xd

)
exp

[
−
(
E − Em

∆E

)2
]

=
∑
j

∫
drd nTo fo rect

(
[xjz − xod]/vd− tm

∆t

)
rect

(
xd − xm

∆xd

)
×

exp

[
−
(
hcqo/ sin(θj/2)− Em

∆E

)2
]
φ

[
hcqo

sin(θj/2)

]
L(θj), (4)

where ∆xd, ∆t, ∆E are the effective detector pixel width, integration time, and energy
resolution, respectively, and xm, tm and Em are the centers of the respective bins. By
evaluating ym for a range of different input point objects, one obtains the forward matrix
H. By considering vectorized versions of the measurement and object y and f , respectively,
one can solve the linear problem y = Hf for f using the algorithm discussed in Sec. 3.

We typically choose to sample the object space with a voxel size of 10 mm in z, 0.5
mm in x, and 0.05 nm−1 in q. In the measurement space, we typically consider energies
between 20 and 90 keV (with energy bins of 1 keV) and record approximately 60 time
steps (enabling the object to pass through approximately 8-10 primary beams). For these
parameters, the matrix H ∈ RN×M is rectangular with the number of estimated object
voxels exceeding that of measurements. Here N = NtNE and M = NzNxNq are the
number of measurements and object points, where t, E, z, x, and q correspond to the time,
energy, range, cross-range and momentum transfer dimensions. For the estimates shown
in the paper, we use a compression ratio of N/M = 5− 10.
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2 Resolution

To estimate analytically the resolution of the system in the absence of noise, we take an
approach similar to that described in [1]. We start by looking at Eqs. 3 and 4 for the case
of a flat input spectrum. One can see that the signal for a point object consists of curve

E(t) =
hcqo

sin[θj(t)/2]
(5)

in E-t space. This curve asymptotes to E →∞ for θ → 0, which occurs when

t =
z/zdxd − x0

v
. (6)

Due to the presence of the mask, the curve is modulated with a frequency of

fmod =
zmvkm
z

, (7)

where km is the spatial frequency of the mask pattern.
Working backwards, one can estimate ∆z (the uncertainty in z) using Eq. 7 and the

time-bandwidth relationship of Fourier transforms. We find that ∆z is reduced for codes
with smaller feature sizes and large source-to-detector distances. Given an estimate of z,
one can then use Eq. 6 along with the finite extent of the detector pixel and integration
time to estimate ∆x. Using the definition of θjk in terms of z and x and the detector energy
resolution ∆E, one can use Eq. 5 to estimate the uncertainty in q. For the parameters used
in our experiment, we find that ∆z ∼10 mm, ∆x ∼1 mm, and ∆q ∼0.01 1/Å. This does
not represents a fundamental limit, though; by using smaller mask features and a larger
zd, one can in theory achieve a resolution of ∆z ∼1-2 mm, ∆x ∼0.5 mm, and ∆q ∼0.005
1/Å for a range of locations and materials.

3 Inversion

We recover the molecular information of the objects illuminated by the x-rays by modeling
the multiplexed measurements y using a Poisson noise model and solving a maximum a
posteriori (MAP) optimization problem using a nonlinear inversion algorithm. Specifically,
we let y ∼ Poisson (Hf + µb) where f ∈ RM×1 is the underlying volumetric image that
we wish to reconstruct and µb is any unmodeled background scatter from the experimental
system. To recover f , we assume that the underlying image in (x, z, q) space is piecewise
smooth spatially (along the (x, z) coordinates) and piecewise polynomial spectrally (along
the q coordinate). This assumption enables us to regularize potential estimates and, along
with a maximum likelihood criterion, ensures that the resulting estimate is as representa-
tive of the measured data as possible and also piecewise smooth spatially and spectrally.
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We implement the reconstruction algorithm using a generalized expectation-maximization
framework where the generalization comes from the fact that the unmodeled background
µb is unknown in practice and needs to be estimated from a realization of the background
b ∼ Poisson(µb). Mathematically, our MAP optimization problem can be described as
follows:

f̂ = arg min
f̃∈ΓM

(
− log p

(
y
∣∣∣Hf̃ + µ̂b

)
+ τpen

(
f̃
))

(8)

where µ̂b is an estimate of µb obtained using the multiscale Poisson denoising algorithm
in [2], ΓM is a collection of estimates obtained using a recursive, dyadic, partition-based

framework also discussed in [2], pen
(
f̃
)

is a penalization term that is proportional to the

complexity of f̃ , and τ is an user-defined parameter that balances the log-likelihood term
and the penalization term. We solve the above optimization problem using a straightfor-
ward extension of the GEM algorithm discussed in [2] to accommodate the background.
The key advantage of this method is its ability to adapt to varying smoothnesses along
the spatial and spectral coordinates. Since the spectrum corresponding to each material
has a piecewise polynomial structure while the objects spatially display piecewise smooth
or blocky structures, the algorithm refrains from using a sparsity basis (e.g., a 3d wavelet
basis) that assumes uniform smoothness along all three coordinates.

References

[1] Joel A. Greenberg, Kalyani Krishnamurthy, and David Brady. Snapshot molecular
imaging using coded energy-sensitive detection. Opt. Express, 21(21):25480–25491, Oct
2013.

[2] Kalyani Krishnamurthy, Maxim Raginsky, and Rebecca Willett. Multiscale photon-
limited spectral image reconstruction. SIAM Journal on Imaging Sciences, 3(3):619–
645, 2010.

4

Electronic Supplementary Material (ESI) for Analyst
This journal is © The Royal Society of Chemistry 2014


