Supplementary Information

Ratiometric sensing of fluoride and acetate anions based on a BODIPYazaindole platform and its application to living cell imaging

Ajit Kumar Mahapatra^{*a}, Rajkishor Maji^a, Kalipada Maiti^a, Susanta Sekhar Adhikari^b, Chitrangada Das Mukhopadhyay^a and Debasish Mandal^c

^aDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah – 711103, India.

^bDepartment of Chemistry, University College of Science, University of Calcutta, Kolkata 700009, India. ^c Department of Spectroscopy, Indian Association for The Cultivation of Science, Jadavpur Kolkata-700032, India.

*Corresponding author: Tel.: +91 33 2668 4561; fax: +91 33 26684564;

E-mail: mahapatra574@gmail.com

Table of Contents:

1.	Fig. S1. ¹ H NMR of sensor 1 (CDCl ₃ , 300 MHz)	S2
2.	Fig. S2. TOF MS ES+ mass spectrum of sensor 1	S3
3.	Fig. S3. ¹³ C NMR of sensor 1 (CDCl ₃ , 75 MHz)	S4
4.	Fig. S4. Job's plot of sensor 1 with F^- ion	S5
5.	Fig. S5. Changes in the UV/vis absorption spectra of sensor 1 wit	h $[Bu_4N]^+AcO^-$
6.	Fig. S6. Association constant calculation graph	S6
7.	Calculations for detection limit	S6
8.	Fig. S7. Fluorescence spectra (excitation at 350 nm) of sensor 1 with	$[Bu_4N]^+AcO^-$
9.	Fig. S8. Change in partial ¹ H NMR spectra of 1 upon addition of [[Bu ₄ N] ⁺ AcO ⁻ in
	CDCl ₃ solvent	S7
10.	. Fig. S9. UV-vis and fluorescence spectral change of sensor 1 with	th [Bu ₄ N] ⁺ OH ⁻
11.	. Fig. S10. Effect of pH	S8
12.	. Fig. S11. Optimized ground-state geometries of sensor 1 and th	ne deprotonated
	species	S9
13.	. Table S1	S9
14.	. Fig. S12. Plots of the frontier orbitals of deprotonated species	S10
15.	. Fig. S13. Fluorescence spectra of 7-Azaindole-3-carboxaldehyde with	$\left[\mathrm{Bu}_4\mathrm{N} ight]^+\mathrm{F}^-$
		S10
16	. Fig. S14. Plots of the frontier orbitals of sensor 1	S11
17.	. Fig. S15. UV-vis and fluorescence spectral change of sensor 1 v	with CO_3^{2-} and
	HCO ₃ ⁻ respectively	S11-S12
18.	. References	S12-S13

Fig. S1. ¹H NMR of sensor $\mathbf{1}$ (CDCl₃, 300 MHz).

Fig. S2. TOF MS ES+ mass spectrum of sensor 1.

Fig. S3. ¹³C NMR of sensor 1 (CDCl₃, 75 MHz).

Fig. S4. Job's plot for determining the stoichiometry of sensor 1 and F^- ion by (a) UV-vis method, (b) fluorescence method.

Fig. S5. Changes in the UV/vis absorption spectra of sensor **1** (4.5 μ M) in 7:3 CH₃CN : H₂O solution (0.02M HEPES buffer, pH 7.2) in the presence of [Bu₄N]⁺AcO⁻ anions (0 – 200 equiv).

Fig. S6. Association constant curve of sensor **1** with F⁻ determined by UV -vis method.

Calculations for detection limit:

The detection limit (DL) of **1** for F^- were determined from the following equation¹:

DL = K* Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph we get slope = 11105, and Sb1 value is 0.004472.

Thus using the formula we get the Detection Limit = $1.21 \mu M$.

Fig. S7. Fluorescence spectra (excitation at 350 nm) of sensor **1** (4.5 μ M) in 7:3 CH₃CN : H₂O solution (0.02M HEPES buffer, pH 7.2) in the presence of 0–200 equiv. of [Bu₄N]⁺AcO⁻.

Fig. S8. Change in partial ¹H NMR spectra of **1** upon addition of $[Bu_4N]^+AcO^-$ in CDCl₃ solvent: (1) 0, (2) 0.5, (3) 1.0, and (4) 2.0 equiv. $[Bu_4N]^+AcO^-$.

Fig. S9. (a) UV-vis spectral change of sensor $1(4.5 \ \mu\text{M})$ in 7:3 CH₃CN : H₂O solution (0.02M HEPES buffer, pH 7.2) in the presence of $[Bu_4N]^+OH^-$ anions (0 – 20 equiv), (b) Fluorescence spectra (excitation at 350 nm) of sensor 1 (4.5 μ M) in 7:3 CH₃CN : H₂O solution (0.02M HEPES buffer, pH 7.2) in the presence of 0–300 equiv. of $[Bu_4N]^+OH^-$.

Fig. S10. (a) UV/vis absorption spectra and (b) fluorescence spectra of solutions of sensor **1** (4.5 μ M) at various pH values (Green: pH 9.0; red: pH 7.2; violet: pH 5.0) in absence of F⁻ ion (solid lines) and in the presence of F⁻ ion (dotted lines). The spectra were recorded at RT in the presence of 0.02M HEPES buffer.

Theoretical Methods. All the calculations on sensor **1** and the deprotonated species were carried out with the Gaussian 03 program package ² by using density functional theory (DFT) and time-dependent DFT (TD-DFT): Becke's three-parameter functional ³ combined with Lee, Yang, and Parr's correlation functional ⁴ (B3LYP), along with the 6-31G(d) basis set, were used. All the geometries and electronic properties were calculated by assuming sensor **1** and the deprotonated species to be the isolated molecules.

Fig. S11. Optimized ground-state geometries of sensor 1 and the deprotonated species.

Table S1. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations, and CI Coefficients of the low-lying excited states of probe and the deprotonated product. The data were calculated by TDDFT//B3LYP/6-31+G(d,p) based on the optimized ground state geometries.

Molecules	Electronic	Excitation	f ^b	Composition ^c	CI ^d
	Transition	Energy ^a			
Probe					
	$S_0 \rightarrow S_1$	2.94 eV(421 nm)	0.4025	$H \rightarrow L$	0.64867
	$S_0 \rightarrow S_{28}$	5.84 eV(211 nm)	0.5019	$H-1 \rightarrow L+3$	0.50791
Deprotonated					
species					
	$S_0 \rightarrow S_1$	2.38 eV(521 nm)	0.2637	$H \rightarrow L$	0.69903
	$S_0 \rightarrow S_3$	3.05 eV(406 nm)	0.3794	$H-1 \rightarrow L$	0.67407

[a] Only selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. [b] Oscillator strength (only the f > 0.2 was considered). [c] H stands for HOMO and L stands for LUMO. [d] The CI coefficients are in absolute values.

HOMO-1

Fig. S12. Plots of the frontier orbitals of deprotonated species.

Fig. S13. Fluorescence spectra (excitation at 270 nm) of 7-Azaindole-3-carboxaldehyde (4.5 μ M) in CH₃CN (0.02M HEPES buffer, pH 7.2) in the presence of 0–200 equiv. of [Bu₄N]⁺ F⁻.

Fig. S14. Plots of the frontier orbitals of sensor 1.

Fig. S15. (a),(b) UV-vis spectral change of sensor $1(4.5 \ \mu\text{M})$ in 7:3 CH₃CN : H₂O solution (0.02M HEPES buffer, pH 7.2) in the presence of CO₃²⁻ and HCO₃⁻ anions (0 – 20 equiv) respectively. (c),(d) Fluorescence spectra (excitation at 350 nm) of sensor 1 (4.5 \ \mu\mm M) in 7:3 CH₃CN : H₂O solution (0.02M HEPES buffer, pH 7.2) in the presence of 0–300 equiv. of CO₃²⁻ and HCO₃⁻ anions respectively.

References:

1. M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, D. Zhu, *Visible near-infrared chemosensor for mercury ion, Organic Letters.*, 2008, **10**, 1481-1484.

2 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.

Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, revision E.01; Gaussian, Inc.: Wallingford, CT.*, 2004.

3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

4. (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37, 785; (b) B. Miehlich, A. Savin,

H. Stoll, H. Preuss, Chem. Phys. Lett., 1989, 157, 200.