Rhodamine based Dual Probes for Selective Detection of Mercury and Fluoride Ions in Water using Two Mutually Independent Sensing Pathways

Namita Kumari,^a Nilanjan Dey^a and Santanu Bhattacharya*^{a, b}

^aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, and ^bChemical Biology Unit, JNCASR, Bangalore 560 064, India.

Contents

1. 2.	Synthetic procedure of starting materials UV-vis titration of 1 and 2 with fluoride ion	S2-3 S4
3.	Interference checking for fluoride ion detection	S4
4.	Fluorescence titrations of 1 and 2 with TBAF in acetonitrile	S5
5.	Stoichiometry determination of 1 and 2 with F^- ion in CH_3CN	S5
6.	Fluorescence titration of 1 and 2 with TBAF in various mixtures of DMF-water	S6
7.	Fluorescence titration of 1 and 2 with KF in various mixtures of DMF-water medium	S 7
8.	UV-vis titration of 1 and 2 with Hg^{2+} ion in CH_3CN	S 8
9.	Interference checking for mercury ion detection	S 8
10.	Normalized absorption spectra 1 with added Hg^{2+} ions and upon addition of various ions/molecules	S9
11.	Stoichiometry determination of 1 and 2 with Hg^{2+} ion in CH_3CN	S9
12.	Fluorescence titrations of 1 and 2 with Hg^{2+} in acetonitrile	S9
13.	Fluorescence spectra of 1 and 2 in 3:2 HEPES (pH 7.4)-CH ₃ CN mixture	S10
14.	Fluorescence titration of 1 and 2 with Hg^{2+} in 3:2 HEPES (pH 7.4)-CH ₃ CN mixture	S11
15.	Recovery of molecular fluorescence of 1 and 2 after adding EDTA	S11
16.	Binding constant of 1 and 2 with Hg^{2+} and F^{-} ion in different media	S12
17.	UV-vis spectra of 1 with added F^- ions and titrated with Hg^{2+} ions and vice-versa	S13
18.	Reversibility study for both 1 and 2 complex of F^- upon addition of Ca^{2+} ions	S14
19.	¹ H NMR titration of 1 with F ⁻	S14
20.	Mass spectra of 1 and 2 after addition of F^- ion	S15
21.	¹ H NMR titration of 1 with Hg ²⁺	S16
22.	IR spectra of 1 and 1-Hg ²⁺ complex	S17
23.	Detection Hg(II) in real life water samples using 1 and 2	S17
24.	Scans of ¹ H and ¹³ C-NMR spectra of 1 and 2	S18-19

Synthesis of starting material:

Scheme S1. Synthetic procedure of starting materials.

Synthesis of rhodamine hydrazone (7). Rhodamine-6G hydrozone (7) was prepared according to a procedure described in literature.¹ In a 50 mL round bottomed flask, Rhodamine-6G (0.48 g, 1 mmol) was dissolved in 15 mL ethanol. To that 1.5 mL (excess) hydrazine monohydrate (85%) was added dropwise with vigorous stirring at room temperature. After the addition, the stirred mixture was refluxed for 2h, and then cooled overnight. The resulting precipitate was filtered and washed 3 times with 10 mL EtOH/water. After drying under vacuum, the reaction afforded Rhodamine-6G hydrozone. Yield 0.37 g, 80 %; IR (neat, cm⁻¹) 3370.6, 2921.5, 1621.4, 1516.6, 1270.3, 1203.6, 1017.8, 742.4; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.32 (t, *J* = 7.1 Hz, 6H), 1.92 (s, 6H), 3.22 (q, *J* = 6.9 Hz, 4H), 3.56 (br, 4H), 6.26 (s, 2H), 6.39 (s, 2H), 7.06 (t, *J* = 3.3 Hz, 1H), 7.45 (t, *J* = 4.6 Hz, 2H), 7.96 (t, *J* = 3.2 Hz, 1H); HRMS *m/z* calcd. for C₂₆H₂₈N₄O₂ (M+Na)⁺ 451.2110, found 451.2106.

Synthesis of 4-(tert-Butyldiphenylsilyloxy)benzaldehyde (3).² 4-hydroxybenzaldehyde (0.5 g, 4.1 mmol), imidazole (0.42 g, 6.1 mmol) and *tert*-butyldiphenylsilyl chloride (1.28 mL, 4.6 mmol) were taken in DMF and stirred at rt for 3 h. After that the reaction mixture was diluted with brine and the aqueous layer was extracted with ether. The combined organic extracts were washed with water, dried (using anhydrous Na₂SO₄) and concentrated to get an oily residue, which was further purified by silica gel column chromatography (5% EtOAc/hexane) to get the silyl ether as white crystals. Yield 1.41 g, 96%; IR (neat, cm⁻¹) 3433.6, 2859.4, 2859.4, 1701.9, 1599, 1508.2, 1274.1, 1115.1, 911.2, 701.2; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.11 (s, 9H), 6.86 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 4H), 7.44 (d, *J* = 7.2 Hz, 4H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 7.2 Hz, 2H), 9.80 (s, 1H); HRMS *m/z* calcd for C₂₃H₂₄O₂Si (M+Na)⁺ 383.1443, found 383.1443.

Synthesis 4-(tert-Butyldiphenylsilyloxy)benzaldehyde of 2, (4). 2. 4hydroxybenzaldehyde (0.25 g, 1.8 mmol), imidazole (0.42 g, 6.1 mmol) and tertbutyldiphenylsilyl chloride (1.3 mL, 4.7 mmol) were taken in DMF and stirred at rt for 3 h. After that the reaction mixture was diluted with brine and the aqueous layer was extracted with ether. The combined organic extracts were washed with water, dried (using anhydrous Na₂SO₄) and concentrated to get an oily residue, which was further purified by silica gel column chromatography (5% EtOAc/hexane) to get the silvl ether as light yellow oily material. Yield 1.13 g, 90%; IR (neat, cm⁻¹) 3450.2, 2959.3, 2859.4, 1686.0, 1594.6, 1428.2, 1112.9, 998.0, 822.5, 700.8; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.04 (s, 18H), 7.20 (s, 2H) 7.37 (t, J = 4.8 Hz, 3H), 7.42-7.39 (m, 12H), 7.50 (d, J = 7.6 Hz, 2H), 7.68 (t, J = 6.4 Hz, 4H), 10.5 (s, 1H); HRMS m/z calcd. for C₃₉H₄₂O₃Si₂ (M+Na)⁺ 637.2570, found 637.2571.

1. (a) Y.-K. Yang, K.-J. Yook and J. Tae, *J. Am. Chem. Soc.*, 2005, **127**, 16760. (b) X.-F. Yang, X.-Q. Guo and Y.-B. Zhao, *Talanta*, 2002, **57**, 883.

2. K. C. Lee, B. S. Moon, J. H. Lee, K.-H. Chung, J. A. Katzenellenbogenb, D. Y. Chi, *Bioorg. Med. Chem.*, 2003, **11**, 3649.

Fig. S1 (a) UV-vis titration of probe (10 μ M) with fluoride ion (TBAF) in acetonitrile. (b) Plot of absorbance ratio with the added fluoride ion.

Fig. S2 Normalized plot of (a) Absorbance at 395 nm for **1** (10 μ M) in CH₃CN upon addition of fluoride ion (TBAF) (20 equiv.) in presence of excess of other anions (50 equiv.). (b) Absorbance at 395 nm for **2** (10 μ M) in acetonitrile upon addition of fluoride ion (TBAF) (20 equiv.) in presence of excess of other anions (50 equiv.).

Fig. S3 Fluorescence titrations of (a) **1** (5 μ M) and (b) **2** (5 μ M) with the F⁻ ion in CH₃CN. ($\lambda_{\text{excit.}} = 305 \text{ nm}$) [Inset: plot of F. I. of the probe at (a) 527 nm and (b) 533 nm with the added F⁻ ion.]

Fig. S4 Stoichiometry determination of (a) 1 and (b) 2 with F^- ion in CH₃CN. [The total concentration [Probe] + [F^-] = 1.0× 10⁻⁴ M.]

Fig. S5 (a) Fluorescence titration of **1** (5 μ M) with TBAF in 9:1 (DMF-water) ($\lambda_{ex.}$ = 305 nm); b) Plot of fluorescence emission intensity at 535 nm with the added F⁻ ion.

Fig. S6 (a) Fluorescence titration of **2** (5 μ M) in 8:2 (DMF-Water) at $\lambda_{ex.}$ = 305 nm. (b) Plot of fluorescence emission intensity at 535 nm with the added fluoride ion.

Fig. S7 (a) Fluorescence titration of 1 (5 μ M) ($\lambda_{ex.}$ = 305 nm) with KF (0-2 ppm) in 9:1 (DMF-Water). (b) Fluorescence titration of 2 (5 μ M) ($\lambda_{ex.}$ = 305 nm) with KF (0-2 ppm) in 8:2 (DMF-water).

Fig. S8 (a) UV-vis titration of probe (10 μ M) with Hg²⁺ ion in CH₃CN. (b) Plot of the absorbance at 526 nm of probe with the added Hg²⁺ ion.

Fig. S9 Normalized plot of the (a) absorbance at 526 nm for **1** (10 μ M) in CH₃CN with Hg²⁺ (4 equiv.) and in presence of excess of other cations (12 equiv.). (b) Absorbance at 528 nm for **2** (10 μ M) in CH₃CN with Hg²⁺ (4 equiv.) and in presence of an excess of other cations (12 equiv.).

Fig. S10 Normalized absorbance of 1 (10 μ M) at 527 nm with 5 equiv. of added Hg²⁺ ions and to that 10 equiv of added ions/molecules.

Fig. S11 Job plot analyses of (a) 1 and (b) 2 with Hg^{2+} ion in CH_3CN . [(δA = change in absorbance); the total concentration [probe] + [Hg^{2+}] = 1.0× 10⁻⁴ M.]

Fig. S12 Fluorescence titration of (a) **1** (5 μ M) and (b) **2** (5 μ M) with Hg²⁺ ion (0-2 equiv.) in CH₃CN ($\lambda_{ex.}$ = 305 nm).

Fig. S13 (a) Fluorescence spectra of probe (5 μ M) in 3:2 HEPES (pH 7.4)-CH₃CN mixture at $\lambda_{ex.}$ = 305 nm, upon addition of various cations (5 equiv.). (b) Normalized plot of the fluorescence intensity with different cations added.

Fig. S14 (a) Fluorescence titration of probe 1/2 (5 μ M) with Hg²⁺ in 3:2 [buffer (pH 7.4)-acetonitrile mixture] ($\lambda_{ex.}$ = 305 nm) (b) plot of F. I. at 553 nm with the added Hg²⁺ ions.

Fig. S15 Recovery of molecular fluorescence of (a) 1 and (b) 2 after adding EDTA (10 equiv.) after each addition of 5 equiv. of Hg^{2+} to the probes (10 μ M) in 6:4 (buffer-acetonitrile mixture).

Table S1. Binding constant of **1** with Hg^{2+} and F^- ion in different media according to Benesi-Hildebrand equation based on a 1:1 stoichiometry.

Analyte	Medium	log K
Hg ²⁺	Acetonitrile	4.45 ± 0.01
Hg^{2+}	(2:3) CH ₃ CN-HEPES buffer	4.17 ± 0.01
TBAF	Acetonitrile	4.89 ± 0.02
TBAF	(9:1) DMF-HEPES buffer	2.54 ± 0.02
KF	(9:1) DMF-HEPES buffer	2.71 ± 0.01

Table S2. Binding constant of **2** with Hg^{2+} for 1:1 stoichiometry and F^- ion for 1:2 stoichiometry in different medium according to Benesi-Hildebrand equation.

Analyte	Medium	log K
Hg ²⁺	Acetonitrile	4.87 ± 0.01
Hg ²⁺	(2:3) CH ₃ CN-HEPES buffer	4.69 ± 0.01
TBAF	Acetonitrile	10.25 ± 0.02
TBAF	(8:2) DMF-HEPES buffer	9.32 ± 0.04
KF	(8:2) DMF-HEPES buffer	8.60 ± 0.05

Fig. S16 UV-vis spectra of (a) 2 (10 μ M) in presence of F⁻ ions and to which titration was performed with progressive addition of Hg²⁺ ions. (b) 2 (10 μ M) in presence of Hg²⁺ ions and to which titration was performed with progressive addition of F⁻ ions.

Fig. S17 UV-vis spectra of (a) 1 (10 μ M) and (b) 2 (10 μ M) in acetonitrile upon addition of 5 equiv. of Ca²⁺ ion after adding F⁻ (10 equiv.).

Fig. S18 Partial ¹H NMR (400 MHz) spectra of **1** in DMSO- d_6 in the presence of [0, 0.25, 0.5, 0.75 and 1 equiv. (1-4)] of F^- (KF in D₂O).

Fig. S19 Mass spectra of (a) 1 and (b) 2 after addition of F^- ion.

Fig. 20 ¹H NMR titration of **1** (8 mM) with $[0, 0.25 \text{ eq.}, 0.5 \text{ eq.}, 0.75 \text{ eq. and } 1 \text{ eq.} (1-5)] \text{ Hg}^{2+}$ (Hg(ClO₄)₂) in DMSO-*d*₆.

Fig. S21 IR spectra of 1 and 1-Hg²⁺.

Protocol for the detection of Fluoride ion in toothpaste. The toothpaste was weighed different amounts (4 samples; 3, 4, 5 and 6 mg) in small vials. The samples were dried overnight in oven (Temperature = 75 °C). Then to each sample 3 mL of water was added. After that the solutions were sonicated at 50 °C for 15 minute and equilibrated for 2 hours at room temperature. Then they were centrifuged and filtered to get clear solution. This solution was treated with the probe solution and the corresponding emission spectra were recorded in 8:2 CH₃CN-Water mixture. In each case enhancement of emission of probe **2** at 535 nm was observed upon addition of toothpaste solution.

Fig. S22 Changes in the emission intensity ratio at 554 nm of (a) **1** (5 μ M) ($\lambda_{ex.}$ = 305 nm) and (b) **2** (5 μ M) ($\lambda_{ex.}$ = 305 nm) with the added Hg²⁺ in tap water, sea water, and swimming pool water.

Fig. S23 ¹H NMR of compound **1**.

Fig. S24 ¹³C NMR of compound **1**.

Fig. S25 ¹H NMR of compound **2**.

Fig. S26¹³C NMR of compound **2**.