Evaluation of the Peak Variance in Gradient Liquid Chromatography Supplementary Information

Weiqiang Hao^{1,2*}, Bin Di^{3*}, Qiang Chen¹, Junde Wang⁴, Yongbin Yang¹, Bangyi Yue¹

¹High-Tech Research Institute of Nanjing University, Changzhou 213164, China

²Key Laboratory of Cigarette Smoke Research, CNTC, Shanghai Tobacco Group Co. LTD, Shanghai 200082, China

³Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China

⁴Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Corresponding author: Dr. Weiqiang Hao, haowq@hotmail.com; Bin Di, ddw888@vip.sina.com.

Figure S1. Plots of $\ln k$ vs φ for anisole (•), *o*-cresol(**n**), biphenyl (\Box), phenol(Δ), aniline (**\Delta**) and

Figure S2. Plots of H, σ vs φ for (a) anisole, (b) biphenyl, (c) phenol, (d) aniline and (e) acetophenone. The solid line is the fit to data by using the quadratic polynomial equation (Eq. (4)).

Figure S3. Comparisons of the experimental and predicted values of H_{ap} and σ for (a) anisole, (b) biphenyl, (c) phenol, (d) aniline and (e) acetophenone. Symbols: o and Δ , experimental values; + and ×, theoretical values calculated by using Eqs. (2), (6), (8) and (11); \diamond and \Box , theoretical values calculated by using Eqs. (2), (6), (8) and (11); \diamond and \Box , theoretical values calculated by using Eqs. (2), (6), (8) and (11); \diamond and \Box , theoretical values calculated by using Eqs. (2), (6), (8) and (11); \diamond and \Box , theoretical values calculated by using Eqs. (2) and (12)-(14).

Figure S4. Chromatograms corresponding to (a) No. 10 in Fig. S3(b) (SL gradient) and (b) No. 12 in Fig. S3(c) (LL gradient), respectively. In the insets, the circle denotes the data obtained by subtracting the baseline from the experimental elution peak, and the solid line is the Gaussian curve calculated by using the corresponding predicted value of σ as shown in Fig. S3.

		Biphenyl			Phenol
No	Туре	Gradient profile $(t_{P,i}, \varphi_i)$	No	Туре	Gradient profile $(t_{P,i}, \varphi_i)$
1	SS	0min, 0.60; 6min, 0.60; 6.01min, 0.75;	1	SS	0min, 0.10; 3min, 0.10; 3.01min, 0.15;
		30min, 0.75			30min, 0.15
2	SS	0min, 0.60; 7min, 0.60; 7.01min, 0.85;	2	SS	0min, 0.10; 3min, 0.10; 3.01min, 0.20;
		30min, 085			30min, 0.20
3	SS	0min, 0.65; 6min, 0.65;6.01min, 0.80;	3	SS	0min, 0.10; 3min, 0.10; 3.01min, 0.25;
		30min, 0.80			30min, 0.25
4	SS	0min, 0.65; 5min, 0.65; 5.01min, 0.85;	4	SS	0min, 0.15; 2min, 0.15; 2.01min, 0.20;
		30min, 0.85			30min, 0.20
5	SS	0min, 0.65; 5min, 0.65; 5.01min, 0.90;	5	SS	0min, 0.15; 2min, 0.15; 2.01min, 0.25;
		30min, 0.90			30min, 0.25
6	SL	0min, 0.60; 30min, 0.90	6	\mathbf{SS}	0min, 0.15; 2min, 0.15; 2.01min, 0.30;
					30min, 0.30
7	SL	0min, 0.60; 25min, 0.90	7	SL	0min, 0.05; 30min, 0.65
8	SL	0min, 0.60; 20min, 0.90	8	SL	0min, 0.05; 25min, 0.65
9	SL	0min, 0.60; 15min, 0.90	9	SL	0min, 0.05; 20min, 0.65
10	SL	0min, 0.60; 12min, 0.90	10	SL	0min, 0.05;15min, 0.65
11	LL	0min, 0.60; 5min, 0.60; 25min, 0.90;	11	SL	0min, 0.05; 12min, 0.65
		30min, 0.90			
12	LL	0min, 0.65; 5min, 0.65; 15min, 0.90;	12	LL	0min, 0.15; 5min, 0.15; 15min, 0.65;
		30min, 0.90			30min, 0.65
13	LL	0min, 0.70; 5min, 0.70; 25min, 0.90;	13	LL	0min, 0.10; 5min, 0.10; 20min, 0.55;
		30min, 0.90			30min, 0.55
			14	LL	0min, 0.05; 1min, 0.05; 21min, 0.45;
					30min, 0.45
			15	LL	0min, 0.15; 1min, 0.15; 21min, 0.55;
					30min, 0.55

 Table S1 Gradient conditions for biphenyl, phenol, aniline and acetophenone.

		Aniline	acetophenone						
No	Туре	Gradient profile $(t_{P,i}, \varphi_i)$	No	Туре	Gradient profile $(t_{P,i}, \varphi_i)$				
1	SS	0min, 0.15; 1min, 0.15; 1.01min, 0.20;	1	SS	0min, 0.40; 1min, 0.40; 1.01min, 0.50;				
		30min, 0.20			30min, 0.50				
2	SS	0min, 0.15; 1min, 0.15; 1.01min, 0.30;	2	SS	0min, 0.40; 1min, 0.40; 1.01min, 0.60;				
		30min, 0.30			30min, 0.60				
3	SS	0min, 0.10; 1min, 0.10; 1.01min, 0.15;	3	SS	0min, 0.40; 1min, 0.30; 1.01min, 0.40;				
		30min, 0.15			30min, 0.40				
4	SS	0min, 0.10; 1min, 0.10; 1.01min, 0.20;	4	SS	0min, 0.30; 1min, 0.30; 1.01min, 0.50;				
		30min, 0.20			30min, 0.50				
5	SS	0min, 0.10; 1min, 0.10; 1.01min, 0.25;	5	SS	0min, 0.30; 1min, 0.30; 1.01min, 0.60;				
		30min, 0.25			30min, 0.60				
6	SS	0min, 0.10; 1min, 0.10; 1.01min, 0.35;	6	SS	0min, 0.30; 1min, 0.30; 1.01min, 0.70;				
		30min, 0.35			30min, 0.70				
7	SL	0min, 0.10; 30min, 0.60	7	SL	0min, 0.20; 30min, 0.70				
8	SL	0min, 0.10; 25min, 0.60	8	SL	0min, 0.20; 25min, 0.70				
9	SL	0min, 0.10; 20min, 0.60	9	SL	0min, 0.20; 20min, 0.70				
10	SL	0min, 0.10; 15min, 0.60	10	SL	0min, 0.20; 15min, 0.70				
11	SL	0min, 0.10; 12min, 0.60	11	SL	0min, 0.20; 12min, 0.70				
12	LL	0min, 0.10; 1min, 0.10; 11min, 0.50;	12	LL	0min, 0.30; 2min, 0.30; 12min, 0.60;				
		30min, 0.50			30min, 0.60				
13	LL	0min, 0.10; 2min, 0.10; 17min, 0.50;	13	LL	0min, 0.30; 3min, 0.30; 18min, 0.60;				
		30min, 0.50			30min, 0.60				
14	LL	0min, 0.15; 1min, 0.15; 16min, 0.50;	14	LL	0min, 0.40; 2min, 0.40; 17min, 0.70;				
		30min, 0.50			30min, 0.70				

				$\sigma(\min)$			H_{ap} (µm)				
No.	Туре	Exp a)	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	Exp a)	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}
1	SS	0.091	0.096	-5.1	0.095	-4.4	7.77	8.59	-10.5	8.47	-9.0
2	SS	0.069	0.075	-8.4	0.073	-5.0	5.87	6.89	-17.4	6.47	-10.2
3	SS	0.054	0.061	-11.7	0.057	-5.1	4.50	5.62	-24.8	4.97	-10.5
4	SS	0.168	0.170	-1.7	0.171	-1.8	9.37	9.69	-3.5	9.71	-3.7
5	SS	0.121	0.126	-4.1	0.126	-4.0	7.30	7.91	-8.3	7.90	-8.2
6	SS	0.091	0.097	-6.9	0.095	-4.6	5.72	6.53	-14.2	6.26	-9.5
7	SL	0.072	0.074	-3.4			2.80	2.99	-6.9		
8	SL	0.064	0.066	-3.0			2.52	2.67	-6.1		
9	SL	0.055	0.056	-2.4			2.23	2.34	-5.0		
10	SL	0.046	0.047	-1.6			1.93	1.99	-3.1		
11	SL	0.040	0.041	-0.6			1.76	1.79	-1.5		
12	LL	0.062	0.063	-1.9			1.69	1.75	-3.6		
13	LL	0.051	0.051	1.3			2.10	2.04	2.8		
14	LL	0.091	0.092	-0.3			12.38	12.45	-0.6		
15	LL	0.065	0.065	0.1			7.51	7.50	0.1		

Table S2 Relative errors between the experimental and theoretical values of σ and H_{ap} for an	isole.
---	--------

b) Theoretical values calculated by using Eqs. (2), (6), (8) and (11).

c) Relative error, (exp-theo)/exp×100%.

		$\sigma(\min)$						H_{ap} (µm)					
No.	Туре	Exp a)	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	Exp ^a	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}		
1	SS	0.061	0.063	-2.5	0.059	4.4	6.98	7.34	-5.2	6.39	8.5		
2	SS	0.039	0.045	-13.6	0.038	3.8	3.60	4.65	-29.1	3.33	7.5		
3	SS	0.100	0.103	-3.0	0.100	0.4	8.19	8.70	-6.2	8.14	0.7		
4	SS	0.059	0.066	-12.1	0.061	-2.7	4.88	6.13	-25.6	5.15	-5.5		
5	SS	0.039	0.051	-31.7	0.041	-6.1	2.92	5.07	-73.6	3.29	-12.5		
6	SS	0.033	0.046	-38.5	0.031	5.6	2.55	4.90	-92.2	2.28	10.7		
7	SL	0.082	0.081	1.3			2.99	2.91	2.7				
8	SL	0.073	0.072	0.8			2.67	2.63	1.5				
9	SL	0.063	0.063	1.1			2.39	2.34	2.1				
10	SL	0.054	0.052	2.3			2.14	2.04	4.7				
11	SL	0.047	0.046	2.0			1.95	1.87	4.1				
12	LL	0.060	0.058	2.6			3.06	2.90	5.2				
13	LL	0.077	0.075	2.4			3.96	3.77	4.8				
14	LL	0.072	0.070	2.6			7.57	7.18	5.2				

Table S3 Relative errors between the experimental and theoretical values of σ and H_{ap} for <i>o</i> -cresol.
--

b) Theoretical values calculated by using Eqs. (2), (6), (8) and (11).

c) Relative error, (exp-theo)/exp×100%.

No	Tune			$\sigma(\min)$			H_{ap} (µm)					
INU.	1 ypc	Exp ^{a)}	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	Exp ^{a)}	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	
1	SS	0.076	0.080	-4.9	0.076	0.0	3.34	3.68	-10.0	3.34	0.1	
2	SS	0.041	0.044	-8.4	0.039	4.2	1.24	1.46	-17.3	1.14	8.2	
3	SS	0.053	0.054	-0.8	0.051	4.8	2.40	2.44	-1.7	2.17	9.4	
4	SS	0.040	0.042	-3.3	0.037	6.9	1.77	1.89	-6.8	1.53	13.4	
5	SS	0.032	0.035	-7.4	0.029	9.2	1.27	1.46	-15.3	1.04	17.5	
6	SL	0.085	0.084	0.7			3.26	3.22	1.4			
7	SL	0.076	0.074	1.5			2.91	2.83	2.9			
8	SL	0.066	0.064	3.0			2.55	2.40	6.0			
9	SL	0.055	0.052	5.0			2.17	1.96	9.6			
10	SL	0.048	0.044	7.1			1.95	1.68	13.9			
11	LL	0.074	0.072	2.1			2.09	2.00	4.3			
12	LL	0.058	0.054	6.7			2.22	1.93	12.9			
13	LL	0.090	0.089	1.6			7.57	7.32	3.3			

Table S4 Relative errors between the experimental and theoretical values of σ and H_{ap} for biphenyl.

b) Theoretical values calculated by using Eqs. (2), (6), (8) and (11).

c) Relative error, (exp-theo)/exp×100%.

No.	Type -			$\sigma(\min)$			H_{ap} (µm)				
No.	I ype	Exp a)	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	Exp a)	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}
1	SS	0.156	0.159	-2.0	0.159	-1.5	10.51	10.93	-4.0	10.84	-3.1
2	SS	0.120	0.125	-4.7	0.123	-2.6	8.37	9.18	-9.6	8.81	-5.3
3	SS	0.094	0.099	-5.5	0.097	-3.5	6.64	7.40	-11.4	7.12	-7.1
4	SS	0.122	0.125	-2.4	0.123	-1.0	10.51	11.02	-4.8	10.73	-2.1
5	SS	0.096	0.098	-2.9	0.097	-1.8	8.44	8.95	-6.0	8.76	-3.7
6	SS	0.076	0.081	-6.2	0.078	-2.5	6.74	7.61	-13.0	7.08	-5.1
7	SL	0.079	0.078	0.6			3.40	3.36	1.2		
8	SL	0.070	0.070	0.8			3.04	3.00	1.4		
9	SL	0.061	0.061	0.5			2.65	2.62	1.2		
10	SL	0.051	0.051	-0.4			2.23	2.25	-0.7		
11	SL	0.045	0.045	-0.7			2.02	2.05	-1.6		
12	LL	0.059	0.055	6.7			2.71	2.36	13.0		
13	LL	0.073	0.070	3.5			2.89	2.69	6.9		
14	LL	0.081	0.080	1.0			3.28	3.22	1.9		
15	LL	0.076	0.074	2.7			5.09	4.82	5.3		

Table S5 Relative errors between the experimental and theoretical values of σ and H_{ap} for phenol.

b) Theoretical values calculated by using Eqs. (2), (6), (8) and (11).

c) Relative error, (exp-theo)/exp×100%.

No.	Туре			$\sigma(\min)$			H_{ap} (μ m)					
NO.		Exp ^{a)}	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	Exp ^{a)}	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	
1	SS	0.084	0.087	-2.7	0.088	-4.1	11.71	12.34	-5.4	12.68	-8.3	
2	SS	0.060	0.060	0.5	0.058	3.3	8.31	8.23	1.0	7.77	6.5	
3	SS	0.105	0.113	-7.6	0.110	-5.2	11.68	13.53	-15.8	12.94	-10.8	
4	SS	0.083	0.087	-4.5	0.087	-5.0	9.67	10.56	-9.2	10.65	-10.2	
5	SS	0.069	0.073	-6.0	0.071	-4.2	8.03	9.02	-12.3	8.71	-8.5	
6	SS	0.051	0.057	-13.3	0.050	1.3	5.89	7.56	-28.4	5.74	2.6	
7	SL	0.080	0.083	-3.0			7.49	7.94	-6.0			
8	SL	0.076	0.077	-1.6			7.01	7.25	-3.4			
9	SL	0.070	0.070	0.2			6.43	6.40	0.5			
10	SL	0.063	0.061	2.9			5.70	5.36	6.0			
11	SL	0.057	0.054	4.8			5.12	4.64	9.4			
12	LL	0.061	0.058	4.0			5.01	4.62	7.8			
13	LL	0.074	0.075	-0.6			6.13	6.20	-1.1			
14	LL	0.074	0.072	2.7			8.73	8.27	5.3			

Table S6 Relative errors between the experimental and theoretical values of σ and H_{ap} for aniline.

b) Theoretical values calculated by using Eqs. (2), (6), (8) and (11).

c) Relative error, (exp-theo)/exp×100%.

No.	Type			$\sigma(\min)$			H_{ap} (µm)					
NO.	Type	Exp ^{a)}	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	Exp ^{a)}	Theo1 ^{b)}	RE(%) ^{c)}	Theo2 ^{d)}	RE(%) ^{c)}	
1	SS	0.054	0.058	-6.4	0.057	-4.5	7.20	8.15	-13.2	7.87	-9.3	
2	SS	0.039	0.041	-7.0	0.037	4.6	4.68	5.35	-14.3	4.26	9.1	
3	SS	0.090	0.099	-10.2	0.096	-6.2	8.47	10.30	-21.6	9.55	-12.8	
4	SS	0.054	0.061	-14.2	0.059	-9.3	5.30	6.91	-30.4	6.34	-19.5	
5	SS	0.039	0.048	-23.3	0.040	-2.0	3.88	5.90	-52.1	4.04	-4.1	
6	SS	0.033	0.044	-33.7	0.030	8.6	3.40	6.09	-79.1	2.84	16.4	
7	SL	0.077	0.082	-6.9			2.77	3.17	-14.4			
8	SL	0.068	0.073	-6.5			2.49	2.82	-13.3			
9	SL	0.059	0.062	-5.2			2.23	2.47	-10.8			
10	SL	0.050	0.052	-2.3			2.00	2.10	-5.0			
11	SL	0.045	0.045	1.1			1.91	1.87	2.1			
12	LL	0.057	0.058	-1.2			3.08	3.16	-2.6			
13	LL	0.073	0.076	-4.1			3.94	4.27	-8.4			
14	LL	0.070	0.071	-1.7			8.45	8.75	-3.6			

Table S7 Relative errors between the experimental and theoretical values of σ and H_{ap} for acetophenone.

b) Theoretical values calculated by using Eqs. (2), (6), (8) and (11).

c) Relative error, (exp-theo)/exp×100%.