Fast and reproducible method to quantify magnetic nanoparticle biodistribution

Lionel Maurizi¹*, Usawadee Sakulkhu¹, Azza ⁵ Gramoun², Jean-Paul Vallee², Heinrich Hofmann¹

1: Powder Technology Laboratory, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland 2: Department of Radiology, University of Geneva and Geneva University Hospital, 1211 Geneva 14, Switzerland

10 * Powder Technology Laboratory, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland, <u>lionelmaurizi@gmail.com</u>

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

15 Electronic supplementary information

Experimental protocols of calibrations curves

Prussian Blue (PB) calibration curves: PB calibrations were prepared by dissolving FeCl₃, 6 H₂O solutions at 0, 0.5, 1, 2, 4, 6, 8, 10, 20 and 30 μ g of iron / mL. 200 μ L of each solution were ²⁰ diluted in 200 μ L HCl 6M solution. Then 25 μ L of these diluted solutions were distributed 3 times in well of 96 wells plate. 25 μ L of HCl 6M and 50 μ L of 5% ferrocyanide solution were then added in each well. The 96 wells plate was then shaking 15 minutes at room temperature and sonicated for 1 minute. The

 $_{25}$ absorbance at 690 nm was then measured and a graph of absorbance (in arbitrary units: a.u.) as a function of iron concentration ($\mu g_{Fe}/mL$) was plotted (Fig. 5). The calibrations curves of PB measurements were done the same day of samples measurements.

blue as a function of iron concentration (in $\mu g_{Fe}/mL$).

function of iron concentration (in $\mu g_{Fe}/mL$).

For MSM calibrations, in order to understand the coating and ⁴⁰ media effects on magnetic response, 3 different calibrations curves were done. First, naked-SPION suspensions with a known iron concentrations were diluted in HNO₃ 10 mM to obtain suspensions at 0, 10, 20, 40, 80, 150, 300 and 600 µg_{Fe}/mL. Then PVA-SPION suspensions were diluted in HNO₃ 10 mM and FBS ⁴⁵ at 0, 26.5, 53, 105, 210 and 425 µg_{Fe}/mL. 850 µL of each suspension were dropped in the 1 mL MS2G cells and their magnetic susceptibilities were measured in the MS2G sensor against 850 µL of control liquids which were respectively HNO₃ 10 mM for Naked-SPION and HNO₃ 10 mM and FBS for PVA-

 $_{50}$ SPION. The Magnetic susceptibilities (SI) as a function of iron mass ($\mu g_{Fe})$ were plotted.

For organs SPION titrations, PB and ICP calibrations curves for SPION suspensions were used. For MSM calibration curves, specific volumes of PVA-SPION were added to a known mass of

- ⁵⁵ dry powder of a control liver and a control spleen stored in a 10 mL cell of MS2B sensor. Because the numbers of rat organs were not sufficient to prepare several calibrations standards, after a volume of PVA-SPION was added on the organ powder, the MS2B cell was measured against a MS2B cell with the same
- ⁶⁰ amount of control organ (dry powder for liver or dry for spleen). Then another volume of PVA-SPION was added again to the cell. These operations were repeated for 0, 10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 μ L of PVA-SPION which gave final mass of iron in liver powder respectively at 0,
- 65 0.06, 0.15, 0.3, 0.45, 0.6, 1.2, 1.8, 2.4, 3, 3.6, 4.2, 4.8, 5.4 and 6 mg_{Fe}. These operations were repeated for 0, 10, 20, 30, 40, and 50 μ L of PVA-SPION which gave final mass of iron in spleen respectively at 0, 0.06, 0.12, 0.18, 0.24, and 0.3 mg_{Fe}.

To compare the dry organs response to SPION in suspensions; 0, 70 0.2, 0.4, 0.6, 0.8, 1.3, 1.7, 2.1, 2.5, 3.3, 4.2 and 5 mg of iron were diluted in 10 mL of HNO₃ 10mM. The Magnetic susceptibilities (SI) as a function of iron mass (mg_{Fe}) were plotted.

Samples preparation

For PB and ICP measurements, the samples were prepared in the ⁷⁵ same conditions as calibration curves. 80 μ L of naked-SPION, PVA-SPION and sera injected with PVA-SPION were dissolved in 920 μ L of HCl 6M overnight at room temperature. Then the solutions were diluted 6 times in distilled water before further analyses. Around 200 mg of liver and 100 to 200 mg of spleen ⁸⁰ were dissolved in respectively 2 and 1 mL of Aqua regia overnight at room temperature. Then the solutions were filtered at $0.45 \ \mu m$ with cellulose syringe filter and diluted 12 times in distilled water before further analyses.

For magnetic susceptibility measurements, the SPION suspensions and dry organs were analyzed as such.

5 Experimental protocols of samples measurements

For PB measurements, 3 times 25 μ L of the solutions of dissolved SPION suspensions or organs were dropped in wells of 96 wells plate. 25 μ L of HCl 6M and 50 μ L of 5% ferrocyanide solution were added in each well. The absorbance of each well

- ¹⁰ was measured at 690 nm. The average of the 3 absorbance measurements gave, using the appropriate PB standard curve, the concentration of iron ([PB]_{dill}: μ g_{Fe}/mL) for the diluted SPION suspensions or the mass of iron (m^{dill}_{PB} : mg_{Fe}) for the diluted organs solutions.The concentration of whole iron in the ¹⁵ suspensions of SPION was obtained by the multiplication of
- $[PB]_{dill}$ by the dilution factor 6. The concentration of whole iron in the organs $(PB_m^{organ}_{Fe})$ was obtained by multiplication of m^{dill}_{PB} by the dilution factor 12, by the volume of aqua regia used to dissolve them (2 mL for the livers and 1 mL for the spleen:
- $_{20}$ $V^{diss}_{\ PB}$ in mL) and by the ratio total mass of organ / mass organ dissolved (R_{PB}).

$$PB_m_{Fe}^{organ} = m_{PB}^{dill} * 12 * V_{PB}^{diss} * R_{PB}$$

For ICP measurements, 3 times 1 mL of the solutions of dissolved SPION suspensions or organs were analyzed 3 times each in ICP. The results given are the concentration of iron ²⁵ ([ICP]_{dill}: μ g_{Fe}/mL) for the diluted SPION suspensions and the mass of iron (m^{dill}_{ICP}: mg_{Fe}) for the diluted organs solutions. The concentration of whole iron in the suspensions of SPION was obtained by multiplication of [ICP]_{dill} by the dilution factor 6. The concentration of whole iron in the organs (ICP_m^{organ}_{Fe}) was

³⁰ obtained by multiplication of m^{dill}_{ICP} by the dilution factor 12, by the volume of aqua regia used to dissolve them (2 mL for the livers and 1 mL for the spleen: V^{diss}_{ICP} in mL) and by the ratio total mass of organ / mass organ dissolved (R_{ICP}).

$$ICP_m_{Fe}^{organ} = m_{ICP}^{dill} * 12 * V_{ICP}^{diss} * R_{ICP}$$

For MSM measurements, 0.85 mL of SPION suspensions without ³⁵ any further modification were put in the 1 mL MS2G cell and measured against the liquid used for the dilution of the SPION (HNO₃ 10mM for naked-SPION and PVA-SPION and FBS for PVA-SPION). For the organs measurements, a measured mass of powder of liver or spleen was added in the 10 mL MS2B cell and ⁴⁰ measured against a control dry liver or spleen in a 10 mL MS2B

cell. Their magnetic susceptibilities (in SI) were measured 3 times for

1 second. By using the appropriate magnetic susceptibility standard curve, the average of the 3 results gave the concentration

⁴⁵ of iron per volume of measurement ($\mu g_{Fe}/mL$) for the SPION suspensions and the mass of iron ($m^{partial}_{MSM}$: mg_{Fe}) in the mass of organ analyzed. The whole iron concentration of the organs ($MSM_m^{organ}_{Fe}$) was obtained by multiplication of $m^{partial}_{MSM}$ by the ratio total mass of organ / partial mass of organ analyzed ⁵⁰ (R_{MSM}).

$$MSM_m_{Fe}^{organ} = m_{MSM}^{partial} * R_{MSM}$$

The averages of the 3 iron concentrations in suspension were plotted for PB, ICP and MSM measurements with standard deviation errors. For organs iron content, the 9 results were shown separately because of the incertitude of *in vivo* 55 biodistribution with standard deviation for the 3 measurements per sample.