Supporting Information

Convenient Detection of Thiol Functional Group Using H/D Isotope Sensitive Raman Spectroscopy

Sabyasachi Bandyopadhyay, Abhishek Dey*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science,

Kolkata, India-700032

EXPERIMENTAL DETAILS

Thiophenol (99+%) was purchased from Spectrochem Pvt. Ltd. 1-ethanethiol (99+%) and deutereted water (99.8%) were purchased from Acros Organics. 1butanethiol (99%), 1-octanethiol (98.5%), 1-dodecanethiol (98+%), cysteamine hydrochloride, cystamine, L-cysteine hydrochloride, L-cystine, N-acetyl cysteine, chloroform-D (99.8+%) and HPLC grade methanol (99.8+%) were purchased from Aldrich chemical company. Glutathione and glutathione disulfide (extrapure) were purchased from SRL Pvt. Ltd. Methanol-D4 (99.8+%) was purchased from Merck Germany. All reagents were used without any further purification. The single distilled water was used for sample preparation.

The neat deuterated samples for PhSH and $C_8H_{17}SH$ (as in Fig. 2a & 2b in main text) are prepared by dissolving the crude (liquid) compounds in 10 equivalents of CD₃OD, and then by evaporating the solvent by rotary evaporation. The Raman spectra of the deuterated species of other alkyl thiols (C₂H₅SH, C₄H₉SH and C₁₂H₂₅SH) were recorded in solutions of CD₃OD. The spectrum of CD₃OD is subtracted from the solution spectra to get the spectra of the deutereted compounds. Similarly the spectra for the protonated thiols are acquired in CH₃OH. Data in water are obtained by dissolving the compounds in H₂O or D₂O (for isotopic substitution).

A Kr⁺ laser (Sabre Innova, model SBRC-DBW-K) from Coherent and a spectrograph with 1.5 mm slit width (model Trivista 555) fitted with an electronically cooled Pixis CCD from Princeton Instruments are used to collect the Raman data. The excitation wavelength used in the Raman experiments is 482.5 nm and the power applied

on the sample is around 30 mW. Spectra of liquid alkylthiols (both neat and solution) are recorded in NMR tubes.

All NMR spectra were recorded on the Bruker DPX-400 spectrometer at room temperature.

All the DFT calculations were performed on the Inorganic-HPC cluster at IACS using the Gaussian 03 software package.¹ The geometries were optimized with the spinunrestricted formalism using both the BP86 functional and the 6-311G* basis set. Frequency calculations were performed on each optimized structure using the same basis set to ensure that it was a minimum on the potential energy surface. The Raman spectra are calculated using the Raman key word in Gausian 03 package.

¹H NMR

PhSH: ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.32 (m, 4H), 7.22 (m, 1H), 3.51 (s, 1H).

PhSH: ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 7.25-7.06 (m, 5H).

C₂H₅SH: ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.54 (m, 2H), 1.37 (t, 1H), 1.31 (t, 3H).

C₂H₅SH: ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 2.50 (q, 2H), 1.29 (t, 3H).

C₈**H**₁₇**SH:** ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.50 (q, 2H), 1.60 (m, 2H), 1.40-1.27 (m, 11H), 0.87 (t, 3H).

C₈**H**₁₇**SH:** ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 2.48 (q, 2H), 1.60 (m, 2H), 1.42-1.24 (m, 10H), 0.89 (t, 3H).

```
Glutathione: <sup>1</sup>H NMR (D<sub>2</sub>O, 400 MHz) δ (ppm): 4.59 (t, 1H), 4.00 (s, 2H), 3.85 (t, 1H), 2.97 (q, 2H), 2.58 (m, 2H), 2.98 (m, 2H).
```

S1-S7: ¹H NMR spectra of thiols

Fig. S1. PhSH in CDCl₃

Fig. S3. C₂H₅SH in CDCl₃

Fig. S4. C₂H₅SH in CD₃OD

S8-S12: Difference Spectra (Raman) of the thiols

Fig. S8. The Raman spectra of (a) neat PhSH and PhSD; (a') PhSH in CH₃OH and CD₃OD; (b) neat C₈H₁₇SH and C₈H₁₇SD (b') C₈H₁₇SH in CH₃OH and CD₃OD; (c) C₄H₉SH in CH₃OH and CD₃OD and (d) C₁₂H₂₅SH in CH₃OH and CD₃OD. Sky blue and green spectra are for protonated species or solutions and pink and red spectra are for deuterated species or solutions. Black spectra represent the difference spectra of corresponding species. The blue and orange arrows represent the shift of β_{CSH} after deuteration and the red arrow represents the shift of v_{CS} for the same. Raman shifts are in cm⁻¹.

Fig. S9. The Raman spectra of C_2H_5SH in (a) CH_3OH (green) and CD_3OD (red) and in (a') H_2O (sky blue) and D_2O (pink), and of N-acetyl cysteine in (b) CH_3OH and CD_3OD and in (b') H_2O and D_2O (same colour code). Black spectra represent the difference spectra of corresponding species. The orange arrow represents the shift of β_{CSH} after deuteration and the blue arrow represents the shift of v_{CS} for the same. Raman shifts are in cm⁻¹.

Fig. S10. The Raman spectra of (a) cysteamine, (a') cystamine and of (b) glutathione, (b') glutathione (S-S) solubilized in H₂O and D₂O. Blue and red spectra corresponds to free thiols in H₂O and D₂O, respectively and brown and green spectra corresponds to disulphide in H₂O and D₂O, respectively. Black spectra represent the difference spectra of corresponding species. The orange arrow represents the shift of β_{CSH} after deuteration and the blue arrow represents the shift of ν_{CS} for the same. Raman shifts are in cm⁻¹.

Fig. S11. The Raman spectra of (a) PhSH in CH₃OH (green) and CD₃OD (orange), of (a') PhSH (violet) and PhSD (blue) by theoretical predictions, of (b) C₂H₅SH in CH₃OH (green) and CD₃OD (orange) and of (b') C₂H₅SH (violet) and C₂H₅SD (blue) by theoretical predictions. Black spectra represent the difference spectra of corresponding species. The red arrow represents the shift of β_{CSH} after deuteration and the green arrow represents the shift of ν_{CS} for the same. Raman shifts are in cm⁻¹.

Fig. S12. The Raman spectra of C₄H₉SH in CH₃OH (green) and CD₃OD (orange). Theoretically predicted results in (a) trans conformation and in (c) gauche conformation. In theoretical spectra violet and blue represents the protonated and deuterated results, respectively. Black spectra represent the difference spectra of corresponding species. The red arrow represents the shift of β_{CSH} after deuteration and the green arrow represents the shift of ν_{CS} for the same. Raman shifts are in cm⁻¹.

	Wave number (cm ⁻¹)					
	Neat		Solution		Assignments	
	SH	SD	CH ₃ OH	CD ₃ OD		
	617	617	617	617	V _{CS}	
PhSH	698	698	698	698	ν_{CS}	
	918	680	918	680	$\beta_{CSH/CSD}$	
			654	661	ν_{CS-G}	
C ₄ H ₉ SH			732	745	ν_{CS-T}	
			846,859	614	$\beta_{CSH/CSD}$	
	655	661	655	661	$v_{\text{CS-G}}$	
C ₈ H ₁₇ SH	739	743	739	743	ν_{CS-T}	
	840,873,893	618,634	840,873,893	630	$\beta_{CSH/CSD}$	
			655	660	$v_{\text{CS-G}}$	
$C_{12}H_{25}SH$			739	742	$\nu_{\text{CS-T}}$	
			850,872	612, 632	$\beta_{CSH/CSD}$	
	Alcoholic solution		Aqueous s	Aqueous solution		
	CH ₃ OH	CD ₃ OD	H ₂ O	D_2O		
	654	671	656	671	V _{CS}	
C ₂ H ₅ SH	870	622	872	620	$\beta_{CSH/CSD}$	
	685	688	682	692	V _{CS}	
N-ac- cysteine	865	638	876	640	$\beta_{CSH/CSD}$	
	654	-	650	-	C=O def.	

Table S1. Raman vibrational assignments ofd peak frequencies (cm^{-1}) for neat thiols and for the solutions of thiols in CH₃OH, CD₃OD, H₂O and D₂O.

 ν indicates the stretching mode, β indicates the in-plane bending mode and def. = deformation.

Table S2. Raman vibrational assignments and peak frequencies (cm ⁻¹) of thiols and their
corresponding disulfides in H_2O and D_2O .

	Free thiol		Disul		
	H ₂ O	D_2O	H ₂ O	D_2O	
	664	676	642	642	V _{CS}
Cysteamine /	785	632	-		$\beta_{CSH/CSD}$
Cystamine	785	742	-		sym-NH ₂
	900	834	-		asym-NH ₂
			730	719	
	673	689	662	662	ν_{CS}
Glutathione /	820	620			$\beta_{CSH/CSD}$
Glutathione (S-S)	820	808	845	835	V _{C-CN}
	895	850	895	840	V _{CC} , V _{C-COO}
	895	850	895	840	V _{CC} , V _{C-COO}

 ν indicates the stretching mode, β indicates the in-plane bending mode.

Table S3. Theoretically calculated Raman vibrational assignments and peak frequencies (cm⁻¹) of an aromatic thiol and two aliphatic thios in their protonated and deuterated forms.

Wave number (cm ⁻¹)								
PhSH		C ₂ H ₅ SH		C ₄ H ₉ SH(T)		C ₄ H ₉ SH(G)		
SH	SD	SH	SD	SH	SD	SH	SD	Assignments
610	610	645	671	715	728	649	673	V _{CS}
688	688		-		-		-	V _{CS}
908	672	835	604	823	618	852, 886	611	$\beta_{CSH/CSD}$
	-		-		-	725, 790	735, 805	$\beta_{CSH/CSD}, \gamma_{CH2/CH3}$
793	793	780	780		-		-	γсн/сн2
	-		-	904	888		-	$\beta_{CSH/CSD}$ and ν_{CC}
						886	872	γсн2/сн3

T and G represent the trans and gauche conformations, respectively, v indicates the stretching mode, β indicates the in-plane bending mode and γ indicates the rocking mode.

Full Referene for Gaussian 03:

(1) Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.;; Robb, M. A. C., J. R.; Scalmani, G.; Barone, V.; Mennucci,; B.; Petersson, G. A. N., H.; Caricato, M.; Li, X.; Hratchian, H.; P.; Izmaylov, A. F. B., J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;; Ehara, M. T., K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,; T.; Honda, Y. K., O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; ,; Jr., P., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;; Kudin, K. N. S., V. N.; Kobayashi, R.; Normand, J.;; Raghavachari, K. R., A.; Burant, J. C.; Iyengar, S. S.; Tomasi,; J.; Cossi, M. R., N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J.; B.; Bakken, V. A., C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.; E.; Yazyev, O. A., A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;; Martin, R. L. M., K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,; P.; Dannenberg, J. J. D., S.; Daniels, A. D.; O; . Farkas; Foresman, J. B. O., J. V.; Cioslowski, J.; Fox, D. J., *Gaussian 03, C.02* 2004, Gaussian, Inc.: Wallingford, CT,.