SUPPORTING INFORMATION

Nitrite ion-induced fluorescence quenching of luminescent BSA-Au₂₅ nanoclusters: mechanism and application

Binesh Unnikrishnan,^a Shih-Chun Wei,^a Wei-Jane Chiu,^a Jinshun Cang,^c Pang-Hung Hsu,^{*,a,b} and Chih-Ching Huang^{*,a,b,d}

^aInstitute of Bioscience and Biotechnology, National Taiwan Ocean University, 20224, Keelung, Taiwan, E-mail: <u>phsu@ntou.edu.tw</u> ^bCenter of Excellence for the Oceans, National Taiwan Ocean University, 20224, Keelung, Taiwan. Email: <u>huanging@ntou.edu.tw</u> ^cDepartment of Chemistry, Yancheng Institute of Industry Technology, Jiangsu, 224005, P. R. China ^dSchool of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

Fig. S1. UV-Vis absorption spectra of 50 mM sodium phosphate (pH 3) containing (A, C) BSA-Au NCs/1std (0.001×) and (B, D) BSA-Au NCs/7thd (0.001×) in the (A, B) absence and (C, D) presence of nitrite (10 μ M). The absorbance (*Abs*) is plotted in arbitrary units (a. u.). Other conditions were the same as those described in Fig. 1.

Fig. S2. Fluorescence lifetime, after excitation at 375 nm, of the BSA-Au NCs/7thd (2 μ M) in the (a) absence and (b) presence of 10 μ M nitrite. The lifetimes (τ_1/τ_2) of BSA-Au NCs in the (a) absence and (b) presence of 10 μ M nitrite was obtained to be 121.86(86.81%)/1.77(13.19%) ns and 114.52(86.08%)/1.76(13.92%) ns, respectively, by fitting a biexponential fluorescence decay. Other conditions were the same as described in Fig. 1.

Fig. S3. Analyses of representative samples of (a) river water, (b) tap water, (c) sea water, and (d) lake water using BSA-Au NCs/NCM probes for nitrite detection. Diluted (twofold) water samples were spiked with nitrite (0–100 μ M). Error bars represent standard deviations from four repeated experiments. Other conditions were the same as those described in Fig. 5

Method	Probe material	Limit	Real sample test	References
		of	-	
		detection		
Fluorescence	BSA-Au NCs/NCM	100 nM	environmental	This work
			human urine	
Fluorescence	^a Rh 6G-fuctionalized	1.2 μM	-	[1]
	silica nanoparticle			
Fluorescence	BSA-Au NCs based	80 nM	tap water, mineral	[2]
	NAND logic gate		water, milk	
			powder, ham	
			sausage and	
			human urine	
Fluorescence	BSA-Au NCs	30 nM	water samples	[3]
Fluorescence	BSA-Au NCs	1 nM	water samples	[4]
Fluorescence	1-aminopyrene	43 nM	water samples	[5]
	nanoparticles			
Colorimetry	Citrate capped AuNPs	100 nM	tap water	[6]
Colorimetry	^b DPPA and MTA	22 µM	lake water	[7]
	functionalized Au NPs	- -		_

Table S1. Comparison of parameters of BSA-Au NCs/NCM probe with those of other nanoparticle based fluorometric/colorimetric nitrite sensors

^ap-hydroxybenzaldlehyde rhodamine 6G hydrozone

^b5-[1,2]dithiolan-3-yl-pentanoic acid [2-(4-amino-phenyl)ethyl]amide modified Au NPs and

(11-mercapto-undecyl)-trimethyl-ammonium

References

- L. Wang, B. Li, L. Zhang, L. Zhang and H. Zhao, Sens. Actuators, B, 2012, 171–172, 946–953.
- [2] J. Zhang, C. Chen, X. Xu, X. Wang and X. Yang, Chem. Commun., 2013, 49, 2691– 2693.
- [3] Q. Yue, L. Sun, T. Shen, X. Gu, S. Zhang and J. Liu, J. Fluoresc., 2013, 23, 1313–1318.
- [4] H. Liu, G. Yang, E.S. Abdel-Halim and J.-J. Zhu, *Talanta*, 2013, 104, 135–139.
- [5] L. Wang, L. Dong, G. -R. Bian, L.-Y. Wang, T.-T. Xia and H.-Q. Chen, *Anal. Bioanal. Chem.*, 2005, **382**, 1300–1303.
- [6] J. Zhang, C. Yang, X. Wang and X. Yang, *Analyst*, 2012, **137**, 3286–3292.
- [7] W.L. Daniel, M.S. Han, J.-S. Lee and C.A. Mirkin, J. Am. Chem. Soc., 2009, 131, 6362–6363.