Supporting Information for

A novel chromo- and fluorogenic dual sensor for Mg²⁺ and Zn²⁺ with cell imaging possibilities and DFT studies[†].

Rabiul Alam^a, Tarun Mistri^a, Atul Katarkar^b, Keya Chaudhuri^b Sushil Kumar Mandal^c, Anisur Rahman Khuda-Bukhsh^c Kalyan K. Das^a and Mahammad Ali^{*},^a ^a Department of Chemistry, Jadavpur University, Kolkata 700 032, India, Fax: 91-33-2414-6223, E-

mail: m ali2062@yahoo.com,

^bMolecular & Human Genetics Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S.C. Mullick Road, Kolkata-700032, India

^cDepartment of Zoology, Kalyani University, Kalyani, 741235, India

Table of contents

- 1. Experimental section
- 2. ¹H NMR spectrum of **DFC-8-AQ**, Figure S1.
- 3. ¹³C-NMR of **DFC-8-AQ**, Figure S1a.
- 4. ¹H NMR spectrum of **DFC-8-AQ** +Mg²⁺, Figure S1b.
- 5. ¹H NMR spectrum of **DFC-8-AQ** + Zn^{2+} , Figure S1c.
- 6. Mass spectrum of **DFC-8-AQ** in CH_3CN , Figure S2.
- 7. Mass spectrum of **DFC-8-AQ** +Mg²⁺ in MeCN, Figure S2a.
- 8. Mass spectrum of DFC-8-AQ +Zn²⁺ in MeCN, Figure S2b .
- 9. Selectivity of **DFC-8-AQ** towards Zn²⁺ and Mg²⁺ over other biologically relevant metal ions, Figure S3.
- 10. Reversibility plot with EDTA Figure S4 .
- 11. UV-vis spectra of the ligand and Zn^{2+} complex in various ratio of CH_3CN-H_2O mixture. Figure S5(a).
- 12. UV-vis spectra of the ligand and Mg^{2+} complex in various ratio of CH_3CN-H_2O mixture. Figure S5(b).
- 13. Flurescence spectra of the ligand and Zn^{2+} complex in various ratio of CH_3CN-H_2O mixture.Figure S5(c).
- 14. Flurescence spectra of the ligand and Mg^{2+} complex in various ratio of CH_3CN-H_2O mixture.Figure S5(d).
- 15. TD-DFT UV-Vis spectrum of [Zn(DFC-8-AQ)₂] in MeCN, Figure S6
- 16 . TD-DFT UV-Vis spectrum of [Mg(DFC-8-AQ)(H_2O)_3] in MeCN, Figure S7.

- 17. UV-Vis spectra of DFC-8-AQ , $[\text{Zn}(\text{DFC-8-AQ})_2]$ and $[\text{Mg}(\text{DFC-8-AQ})(\text{H}_2\text{O})_3]$ in MeCN-H_2O 9:1
- v/v, 1 mM HEPES buffer, pH 7.2. Figure S8.
- 18. Chemical shifts in NMR of $\mbox{DFC-8-AQ}$, \mbox{Zn}^{2+} and \mbox{Mg}^{2+} complex. Table S1
- 19. LOD determination

Figure S1. ¹H NMR spectrum of **DFC-8-AQ** in CD₃CN, in Bruker 300 MHz instrument.

S1a. ¹³C NMR of the ligand **DFC-8-AQ** in DMSO- d_6 .

Figure S1b. ¹H NMR spectrum of **DFC-8-AQ** +Mg²⁺ in CD₃CN, in Bruker 300 MHz instrument.

Figure S1c. ¹H NMR spectrum of **DFC-8-AQ** +Zn²⁺ in CD₃CN, in Bruker 300 MHz instrument.

Figure S2. Mass spectrum of DFC-8-AQ in MeCN.

Figure S2a. Mass spectrum of DFC-8-AQ +Mg²⁺ in MeCN.

Figure S2b. Mass spectrum of DFC-8-AQ +Zn²⁺in MeCN.

Figure S3. Selectivity of DFC-8-AQ towards Mg²⁺ and Zn²⁺ over other biologically relevant metal ions.

Figure S4. Reversibility plot of Zn complex and Mg complex With excess EDTA.

Figure S5(a). UV-vis spectra of the ligand and Zn²⁺ complex in various ratio of CH₃CN-H₂O mixture

Figure S5(b). UV-vis spectra of the ligand and Mg²⁺ complex in various ratio of CH₃CN-H₂O mixture

Figure S5(c). Flurescence spectra of the ligand and Zn^{2+} complex in various ratio of CH_3CN-H_2O (HEPES buffer) mixture.

Figure S5(d). Flurescence spectra of the ligand and Mg^{2+} complex in various ratio of CH_3CN-H_2O (HEPES buffer) mixture

Figure S6. TD-DFT UV-Vis spectrum of [Zn(DFC-8-AQ)₂] in MeCN

Figure S7. TD-DFT UV-Vis spectrum of $[Mg(DFC-8-AQ)(H_2O)_3]$ in MeCN

Figure S8. UV-Vis spectra of **DFC-8-AQ**, $[Zn(DFC-8-AQ)_2]$ and $[Mg(DFC-8-AQ)(H_2O)_3]$ in MeCN-H₂O 9:1 v/v, 1 mM HEPES buffer, pH 7.2.

Compound	CH=O(b)	CH=N(c)	f	g	OH
DFC-8-AQ	10.53	9.003	8.95	8.33	15.39(b)
DFC-8-AQ -Zn ²⁺ (1)	10.16	9.26	9.15	8.94	•••
DFC-8-AQ -Mg ²⁺ (2)	10.17	9.57	9.19	8.74	•••

19. Calculation of the detection limit(LOD):

The detection limit DL of **DFC-8-AQ** for M^{2+} (M = Mg and Zn) was determined from 3σ method by following equation: **DL** = K* Sb₁/S

Where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve obtained from Linear dynamic plot of FI vs. [M^{2+}].

Figure S9a. Determination of Sb_1 or the blank, DFC-8-AQ solution.

Figure S9b. Linear dynamic plot of FI at 526 nm vs. $[Mg^{2+}]$ for the determination of S (slope); [DFC-8-AQ] =20 μ M

LOD (Mg²⁺) = $(3 \times 0.011)/1.615 \times 10^7 = 2.04 \text{ nM}$

Figure S9c. Linear dynamic plot of FI at 539 nm vs. $[Zn^{2+}]$ for the determination of S (slope); [DFC-8-AQ] =20 μ M

LOD $(Zn^{2+}) = (3 \times 0.011)/5.68 \times 10^6 = 5.81 \text{ nM}$