1 Supporting Information For

2

Rapid electrodeposition of gold-Prussian blue nanocomposite of
ultrahigh electroactivity for dual-potential amperometric biosensing
of uric acid

- 7 Wen Wang,^a Cong Qin,^a Qingji Xie,^{*,a} Xiaoli Qin,^a Long Chao,^a Yi Huang,^a Mengzhen Dai,^a
- 8 Chao Chen, *,ª Jianying Huang,ª Jiming Hu^b
- 9
- 10 "Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of
- 11 Education of China), College of Chemistry and Chemical Engineering, Hunan Normal
- 12 University, Changsha 410081, China. E-mail: xieqj@hunnu.edu.cn;
- 13 chenchao840103@163.com. Tel./Fax: +86 731 88872046
- 14
- 15 ^bKey Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education of
- 16 China), Wuhan University, Wuhan 430072, China
- 17

1 Contents

2	Quantification of the enzymatic activity(S3)						
3	Table S1. Electrochemical parameters for the two pairs of redox peaks of (Au-PB) _{nano} , (Au-						
4	PB) _{REd} , and PB _{con} modified EQCM Au electrodes given in Fig. 1(S4)						
5	Table S2. Performance comparison between the reported UA amperometric biosensors based						
6	on UOx and our UA biosensors(S5)						
7	Table S3. Determination of UA in human serum samples using the developed						
8	method(S6)						
9	Fig. S1(S7)						
10	Fig. S2(S8)						
11	Fig. S3(S9)						
12	Fig. S4(S10)						
13	Fig. S5(S11)						
14	Fig. S6(S12)						
15	Fig. S7(S13)						
16	Fig. S8(S15)						
17	Fig. S9(S17)						
18	Fig. S10(S18)						
19	Fig. S11(S19)						
20	References(S20)						
21							

1 Quantification of the enzymatic activity

2 For the evaluation of ESA_n, the procedures were (1) an amperometric working curve was 3 drawn to correlate the H₂O₂ concentration with the static current for reduction of H₂O₂ on an (Au-PB)_{REd}/Au disk electrode at -0.05 V in a stirred 0.1 M phosphate buffer (pH 7.4, 10 mL); 4 5 (2) sufficient UA (1 mM) was added into a stirred UOx-containing phosphate buffer (with known mass of $\Delta m_{\rm UOx}$) of specific volume with its final concentration saturating the 6 7 enzymatic reaction in the solution, and the change in the reduction current (Δi_c) on (Au-PB)_{REd}/Au disk electrode at -0.05 V in the sequent 60 s was recorded and used to quantify the 8 enzymatically generated H_2O_2 ($n_{H_2O_2}$ here), according to the amperometric working curve 9 10 obtained above. The evaluation of ESA_i was in a similar way, except that UOx-PABA-PtNPs bionanocomposite was used instead of native UOx. 11

In this work, the mass of added Δm_{UOx} for native and immobilized UOx (entrapped in the UOx-PABA-PtNPs bionanocomposite, a soluble sol) were both 0.075 mg. We obtained the Δi_c on (Au-PB)_{REd}/Au disk electrode at -0.05 V in the sequent 60 s as 0.45 and 0.31 μ A for native and immobilized UOx (Fig. S5), respectively. Hence, the $n_{H_2O_2}$ could be calculated according to the calibration curve (Fig. S3, black curve), here was measured to be 0.122 μ mol for native UOx and 0.084 μ mol for immobilized UOx. So the values of ESA_n and ESA_i are calculated to be 1.63 U mg⁻¹ and 1.12 U mg⁻¹, respectively.

19

1 Table S1. Electrochemical parameters for the two pairs of redox peaks of (Au-PB)_{nano}, (Au-

Modified EQCM Au	E _{pa1}	i _{pa1}	E _{pc1}	i _{pc1}	$\Delta E_{\rm p1}$	E _{pa2}	<i>i</i> _{pa2}	E _{pc2}	<i>i</i> _{pc2}	$\Delta E_{\rm p2}$
electrodes	/ V vs.	/ mA	/ V vs.	/ mA	/ V vs.	/ V vs.	/ mA	/ V vs.	/ mA	/ V vs.
	SCE		SCE		SCE	SCE		SCE		SCE
(Au-PB) _{nano}	0.161	0.212	0.135	-0.289	0.026	0.901	0.0798	0.827	-0.0687	0.074
(Au-PB) _{REd}	0.164	0.482	0.136	-0.583	0.028	0.903	0.190	0.828	-0.177	0.075
PB _{con}	0.221	1.30	0.135	-2.52	0.086	0.928	0.181	0.801	-0.165	0.127

 $2~PB)_{REd},$ and PB_{con} modified EQCM Au electrodes given in Fig. 1*

3 *The background currents are corrected.

I

S<u>4</u>

1 Table S2. Performance comparison between the reported UA amperometric biosensors based

2 on UOx and our UA biosensors*

I

Biosensor	Detection	Sensitivity /	LOD / µM	Linear range	Referenc
	potential / V	µA mM ⁻¹ cm ⁻²			e
Pt/(PAA/PVS)2PAA/(UOx/PAA)9UO	0.6 ^b	-	-	1 μM - 1 mM	1
Х					
uricase/Ir-C electrode	0.6 ^b	110.7	10	0.1 mM - 0.8 mM	2
UOx/PB/CS/ITO	0.2ª	_	0.18	5 μM - 1.15 mM	3
uricase/BS3/APTES/ITO electrode	0.26 ^b	39.35	37	50 µM - 0.58 mM	4
UOx-Th-SWNTs/GCE	-0.4ª	90	0.5	2 µM - 2 mM	5
uricase/AuNP/MWCNT/Au	0.4 ^b	-	10	10 µM - 0.8 mM	6
GNP/uricase/Au electrode	0.6ª	108	7	20 µM - 2.5 mM	7
uricase/PBNPs/MWCNT/PANI/Au	0.4 ^b	_	5	5 µM - 0.8 mM	8
CS/uricase-PTBA-Pt _{nano} /Pt _{plate} /Au	0.55 ^a	134.4	1	5 μM -1.18 mM	9
SPE-PB-UOx biosensor	-0.05 ^b	_	10	30 µM - 0.3 mM	10
CS/UOx-PABA-Ptnano/(Au-PB)REd/Au	-0.05ª	247	0.1	0.2 μM - 0.25 mM	This work
CS/UOx-PABA-Ptnano/(Au-	-0.05 ^a	210	0.15	0.25 μM - 0.25 mM	This work
PB) _{nano} /Au					
CS/UOx-PABA-Ptnano/PBcon/Au	-0.05 ^a	185	0.2	0.3 µM - 0.2 mM	This work
CS/UOx-PABA-Ptnano/Au	-0.05 ^a	_	-	-	This work
CS/UOx-PABA-Ptnano/(Au-PB)REd/Au	0.7ª	223	0.2	0.3 µM - 0.65 mM	This work
CS/UOx-PABA-Ptnano/(Au-	0.7ª	216	0.2	0.3 μM - 0.65 mM	This work
PB) _{nano} /Au					
CS/UOx-PABA-Ptnano/PBcon/Au	0.7ª	174	0.25	0.5 μM - 0.6 mM	This work
CS/UOx-PABA-Ptnano/Au	0.7 ^a	205	0.2	0.3 μM - 0.6 mM	This work

*The potential is cited versus (a) SCE or (b) Ag/AgCl reference electrode. PAA : poly(allylamine); 3 PVS: poly(vinyl sulfate); Ir-C: Ir-modified carbon; BS³: bis[sulfosuccinimidyl]suberate; 4 5 APTES: 3-aminopropyltriethoxysilane; ITO: indium-tin-oxide; th: thionine; SWNTs: singlewalled carbon nanotube; GCE: glassy carbon electrode; AuNP/GNP: gold nanoparticle; 6 MWNT: multi-walled carbon nanotube; PBNPs: Prussian blue nanoparticles; PANI: 7 polyaniline; PTBA: poly(thiophene-3-boronic acid); SPE: screen-printed electrode. Here, in 8 the writing form of a modified electrode we take the following common standard. From right 9 to left is in turn substrate electrode and gradually modified materials, thus the more to the left 10 the more to the outer surface of electrode; "/" means interface (modification of an outer layer 11 on the existing layer at the electrode) and "-" is used to delimit various individual components 12 13 exiting in a composite.

Sample	Determined / µM	Spiked / µM	Found / µM	Recovery / %	RSD / %
		20	20.6	103	
Serum #1	253	25	24.5	98	2.3
		30	28.7	95.6	
	226	20	20.4	102	
Serum #2		25	25.7	103	4.4
		30	28.5	95	
		20	19.4	97	
Serum #3	304	25	25.3	101.2	2.7
		30	28.9	96.3	

1 Table S3. Determination of UA in human serum samples using the developed method*

2 *The samples were analyzed with the CS/UOx-PABA-PtNPs/(Au-PB)_{REd}/Au disk electrode.

3 Recovery was obtained by adding standard solutions of UA to human serum samples which
4 were 10-fold diluted with 0.1 M phosphate buffer (pH 7.4). The current response was
5 recorded at -0.05 V vs SCE and each value is the mean of three determinations.

6

2 Fig. S1. Effect of concentration of the added $Fe_2(SO_4)_3$ on the electrodeposition of $(Au-PB)_{REd}$ 3 film. Cyclic voltammograms (25 cycles in total) were obtained on the Au disk electrode in aqueous solutions of 1 mM K₃Fe(CN)₆ + 1 mM HAuCl₄ + 0.1 M K₂SO₄ containing 0 (A), 4 0.01 mM (B), 0.05 mM (C), 0.1 mM (D), 0.2 mM (E), and 1 mM Fe₂(SO₄)₃ (F), respectively. 5 6 Scan rate: 50 mV s⁻¹. Initial potential: 1 V; Initial scan: negative. Only the cyclic 7 voltammograms of the 1st, 5th, 10th, 15th and 25th cycles are shown for drawing clarity. Here, with the increase of Fe₂(SO₄)₃ concentration, the peak current after the 25-cycle CV 8 electrodeposition gradually increased and became almost maximum after 0.1 mM Fe₂(SO₄)₃ 9 10 was added. When the concentration of added $Fe_2(SO_4)_3$ was larger than 0.1 mM, the redox 11 peaks near 0.2 V became notably wider due to the overlapping of the shoulder peaks and showed increased peak-to-peak separation. Since a faster electrode process should possess the 12 sharper redox peaks, we believe that the addition of 0.1 mM $Fe_2(SO_4)_3$ can lead to an (Au-13 PB)_{REd} film with the highest electrochemical reversibility and thus the best electrocatalytic 14 15 efficiency, as confirmed in Figs. S2 and S3.

Fig. S2. Cyclic voltammograms at the above-prepared (Au-PB)_{REd}/Au disk electrodes (as 2 3 shown in Fig. S1) in 0.1 M phosphate buffer (pH 7.4) with (blue dashed curve) and without (black solid curve) 1 mM H₂O₂. Scan rate: 50 mV s⁻¹. Initial potential: 0.35 V; Initial scan: 4 negative. Here, the peak shape located at ca. 0.2 V remained almost the same as that of the 5 25th cycle electrodeposition curve in each case. After adding 1 mM H₂O₂, the oxidation 6 7 current decreased and the reduction current increased, corresponding to the well-known 8 electrocatalytic characteristic in CV experiments. The increment of the reduction peak current became maximum ($|\Delta i_{pc}| = 61.5 \ \mu A - 44.6 \ \mu A = 16.9 \ \mu A$, background-corrected) when the 9 concentration of added Fe₂(SO₄)₃ was 0.1 mM, demonstrating the greatest electrocatalytic 10 efficiency for reduction of H₂O₂ here. 11

Fig. S3. Chronoamperometric responses (A) to successive additions of H₂O₂ and calibration 2 curves (B) on the above-prepared (Au-PB)_{REd}/Au disk electrodes (as shown in Fig. S1) at -3 0.05 V (optimized) in 0.1 M phosphate buffer (pH 7.4). Here, the linear regression equations 4 are $\Delta j \text{ (mA cm}^{-2)} = -0.736c \text{ (mM)} - 0.699 (r^2=0.993) \text{ (case 1)}, \Delta j \text{ (mA cm}^{-2)} = -0.976c \text{ (mM)} - 0.699 \text{ (r}^2=0.993) \text{ (case 1)}, \Delta j \text{ (mA cm}^{-2)} = -0.976c \text{ (mM)}$ 5 $0.135 (r^2=0.987)$ (case 2), Δj (mA cm⁻²) = -1.01c (mM) - 0.106 (r²=0.992) (case 3), Δj (mA 6 cm^{-2}) = -0.665*c* (mM) - 0.0008 (*r*²=0.999) (case 4), Δj (mA cm^{-2}) = -1.02*c* (mM) - 0.110 7 $(r^2=0.993)$ (case 5), and Δj (mA cm⁻²) = -1.11c (mM) - 0.0.077 ($r^2=0.996$) (case 6). The 8 sensitivity of (Au-PB)_{REd}/Au disk electrode for amperometric detection of H₂O₂ (1.11 mA cm⁻ 9 ² mM⁻¹, case 6) is the largest, being approximately 1.5 times of that of (Au-PB)_{nano}/Au disk 10 electrode (0.736 mA cm⁻² mM⁻¹, case 1), demonstrating the excellent electrocatalytic 11 12 efficiency of our (Au-PB)_{REd} nanocomposite film. The H₂O₂-detection sensitivity of our (Au-PB)_{REd}/Au electrode is also superior to those of many reported H₂O₂ amperometric sensors ¹¹⁻ 13 12. 14

Fig. S4. UV-vis absorption spectra of UOx (1), UOx + ABA (2) after Na₂PtCl₆ was added to 2 allow redox reaction at 35 °C for 0 (3) and 5 h (4) in 0.1 M phosphate buffer (pH 7.4). Inset: 3 corresponding digital images of respective aqueous solution. Here, the absorption band at ca. 4 280 nm is assigned to the absorption of UOx in the phosphate buffer ¹³⁻¹⁴. The absorption 5 from ca. 200 to 260 nm increased after adding ABA. The absorption from ca. 200 to 300 nm 6 decreased but the absorption from ca. 300 to 600 nm increased after adding Na₂PtCl₆ to allow 7 8 reaction for 5 h at 35 °C, and the liquid mixture showed red color with some black 9 precipitates, due to the coexistence of black polyaniline-like PABA precipitates, black Pt 10 nanoparticles, and soluble oligomers of ABA in red color 9.

2 Fig. S5. Chronoamperometric responses of enzymatic kinetic of native (1) and immobilized
3 (entrapped in UOx-PABA-PtNPs bionanocomposite, 2) UOx on (Au-PB)_{REd}/Au disk
4 electrodes at -0.05 V to addition of 1 mM UA in 0.1 M phosphate buffer (pH 7.4).

I

2 Fig. S6. Cyclic voltammograms at bare Au, (Au-PB)_{REd}/Au, UOx-PABA-PtNPs/(Au3 PB)_{REd}/Au and CS/UOx-PABA-PtNPs/(Au-PB)_{REd}/Au disk electrodes in air saturated (black
4 curves) or nitrogen saturated (blue curves) 0.1 M phosphate buffer (pH 7.4) with (dashed
5 curves) or without (solid curves) 1 mM H₂O₂. Scan rate: 50 mV s⁻¹. Initial potential: 0.35 V;
6 Initial scan: negative.

Fig. S7. Effects of CV cycle-number for electrodeposition of the (Au-PB)_{REd} film on Au disk 2 3 electrode (A), as well as the amounts of UOx (B), ABA (B), Na₂PtCl₆ (C) and CS (C) for preparing the CS/UOx-PABA-PtNPs/(Au-PB)_{REd}/Au disk enzyme electrode. Effects of 4 solution pH (at -0.05 V vs SCE, D) and applied potential (D) on the steady-state current 5 response of the CS/UOx-PABA-PtNPs/(Au-PB)_{REd}/Au disk electrode during biosensing in 0.1 6 7 M phosphate buffer containing 0.1 mM UA. Here, the thickness of (Au-PB)_{REd} film was optimized to be 25 cycles, due probably to the fact that a thinner film gives insufficient active 8 sites for the electrocatalyzed reduction of the enzymatically generated $\mathrm{H_2O_2}$ and thus a 9

saturated response can be obtained after 25 CV cycles. The amount of the enzyme cast on 1 electrode is a vital factor affecting the analytical performance of the biosensor and a 2 maximum Δi value was found at 6 mg mL⁻¹ UOx. Here, the excess ABA (2 mg mL⁻¹) can 3 sufficiently reduce Na₂PtCl₄ (3.8 mM) to produce more PtNPs for increased biosensing 4 5 sensitivity and the cast volume of 0.20 wt% CS was optimized as 1.5 µL. During biosensing of the prepared enzyme electrode, the maximum response was observed at 0.7 V (H₂O₂-6 oxidation mode) and at -0.05 V (H₂O₂-reduction mode) which are consistent with the early 7 reports 7, 10. The strongest boronic acid/diol complexes are generated at pH generally above 8 the p K_a of boronic acid (8.9 for ABA) ¹⁵, but PB is not so stable at alkaline pH. Thus, the 9 optimum pH was selected at physiological pH 7.4, which also makes it more efficient in 10 quantitative determination of UA in biological fluids like human serum. 11

12

2 Fig. S8. Cyclic voltammograms of bare Au (A), (Au-PB)_{REd}/Au (B) and AuNPs/Au (C, after removing PB by careful washing with 0.1 M NaOH and then HCl) disk electrodes in 0.1 M 3 phosphate buffer (pH 7.4) with (blue dashed curves) or without (black solid curves) 1 mM 4 H₂O₂. Scan rate: 50 mV s⁻¹. Initial potential: 0.2 V (except for B which is 0.35 V); Initial scan: 5 6 positive. Here, the irreversible electrooxidation peak of H2O2 on the three electrodes occurred at a similar potential (ca. 0.7 V vs SCE). The peak current followed the order (Au-PB)_{REd}/Au 7 $(24.3 \ \mu\text{A}) \approx \text{AuNPs/Au} (24.2 \ \mu\text{A}) > \text{bare Au} (20.2 \ \mu\text{A})$ disk electrode, thus we can come to 8 9 the conclusion that the improved electrooxidation of H₂O₂ at (Au-PB)_{REd}/Au disk electrode is 10 due to the presence of AuNPs in the (Au-PB)_{REd} film. In addition, it is well known that the electrooxidation of H₂O₂ on a Pt electrode is easier (at a lowered overpotential) than that on 11 an Au electrode, as a result of the enhanced catalytic ability toward electrooxidation of H₂O₂ 12 intrinsically on Pt 16-17. However, in our cases, (1) no obvious characteristic current peaks of 13 Pt were observed on the CV curves of UOx-PABA-PtNPs/(Au-PB)_{REd}/Au and CS/UOx-14 15 PABA-PtNPs/(Au-PB)_{REd}/Au disk electrodes (the cathodic peak of Pt oxides and dissolved oxygen is generally at ca. 0.3 V on a Pt electrode in 0.1 M H₂SO₄¹⁸), probably due to the 16 shielding of the large redox peaks of PB, as shown in Fig. S6; (2) from the effect of applied 17 potential on the steady-state current response of the CS/UOx-PABA-PtNPs/(Au-PB)_{REd}/Au 18 19 disk electrode during biosensing in 0.1 M phosphate buffer (pH 7.4) containing 0.1 mM UA (Fig. S7 D), a saturated response current was obtained at 0.7 V vs. SCE, which is more 20 positive than the typical results reported on Pt electrodes (generally on ca. 0.55 V vs. SCE^{9,19}). 21 The above results and discussion support that the PtNPs here cannot exhibit notable 22 electroactivity and electrocatalytic activity for oxidation of H2O2 under our experimental 23

1 conditions, as explained below. Unlike the cases of electrodeposited PtNPs, the chemically generated PtNPs here should be mostly embedded in the bionanocomposite, and most of them 2 should not be electrically connected to the electrode after cast-coating the PtNPs-containing 3 bionanocomposite on the electrode surface to exhibit obvious electroactivity and 4 5 electrocatalysis activity, and only a few PtNPs residing on the outer surfaces of bionanocomposite particles can be electrically connected to the electron-conducting Au sites 6 of (Au-PB)_{REd} to exhibit notable electroactivty and electrocatalytic activity for oxidation of 7 8 H_2O_2 (note that the PB sites of (Au-PB)_{Red} is not electron-conducting). Hence, we conclude that the improved electrooxidation of H_2O_2 even at the CS/UOx-PABA-PtNPs/(Au-PB)_{REd}/Au 9 disk enzyme electrode is predominantly due to the presence of AuNPs in the (Au-PB)_{REd} film, 10 and we also believe that the PtNPs here can contribute to the improved analytical performance 11 of our enzyme electrode to a small degree. 12

13

Fig. S9. Cyclic voltammograms at bare Au, $(Au-PB)_{REd}/Au$, CS/PABA-PtNPs/ $(Au-PB)_{REd}/Au$ and CS/UOx-PABA-PtNPs/ $(Au-PB)_{REd}/Au$ disk electrodes in 0.1 M phosphate buffer (pH 7.4) with (blue dashed curves) or without (black solid curves) 2 mM UA. Scan rate: 50 mV s⁻¹; Initial potential: 0.35 V (except for the bare Au disk electrode which is 0.2 V); Initial scan: negative. Inset: amperometric responses to 50 μ M UA at 0.7 V (H₂O₂-oxidation mode, blue curves) and -0.05 V (H₂O₂-reduction mode, black solid curve) in 0.1 M phosphate buffer (pH 7.4).

2 Fig. S10. Effects of additions of 0.1 mM UA, 1 mM glucose, 1 mM urea, 0.1 mM ascorbic
3 acid, 0.1 mM L-cystine, and 0.1 mM UA on the response of CS/UOx-PABA-PtNPs/(Au4 PB)_{REd}/Au disk electrode at -0.05 V in 0.1 M phosphate buffer (pH 7.4).

2 Fig. S11. The storage stability of the constructed biosensor under storage conditions (in a
3 refrigerator at 4 °C). The measurements were conducted in 0.1 M phosphate buffer (pH 7.4)
4 containing 50 μM UA at -0.05 V vs SCE.

- 1 **References** (The numbering here is only for the Supporting Information)
- 2 1 T. Hoshi, *Talanta*, 2003, **61**, 363-368.
- 3 2 Y. C. Luo, J. S. Do and C. C. Liu, Biosens. Bioelectron., 2006, 22, 482-488.
- 4 3 H. Tao, X. Wang, X. Wang, Y. Hu, Y. Ma, Y. Lu and Z. Hu, *J. Nanosci. Nanotechnol.*, 2010, 10, 5 860-864.
- 6 4 T. Ahuja, Rajesh, D. Kumar, V. K. Tanwar, V. Sharma, N. Singh and A. M. Biradar, Thin Solid
- 7 Films, 2010, **519**, 1128-1134.
- 8 5 D. Chen, Q. Wang, J. Jin, P. Wu, H. Wang, S. Yu, H. Zhang and C. Cai, *Anal. Chem.*, 2010, 82, 9 2448-2455.
- 10 6 N. Chauhan and C. S. Pundir, Anal. Biochem., 2011, 413, 97-103.
- 11 7 Y. Liu, M. Yuan, L. Liu and R. Guo, Sens. Actuators B, 2013, 176, 592-597.
- 12 8 R. Rawal, S. Chawla, N. Chauhan, T. Dahiya and C. S. Pundir, *Int. J. Biol. Macromol.*, 2012, 50, 13 112-118.
- 14 9 Y. Huang, L. Bu, W. Wang, X. Qin, Z. Li, Z. Huang, Y. Fu, X. Su, Q. Xie and S. Yao, Sens.
- 15 Actuators B, 2013, 177, 116-123.
- 16 10 S. Piermarini, D. Migliorelli, G. Volpe, R. Massoud, A. Pierantozzi, C. Cortese and G. Palleschi,
- 17 Sens. Actuators B, 2013, **179**, 170-174.
- 18 11 M. Gaitan, V. R. Goncales, G. J. Soler-Illia, L. M. Baraldo and S. I. de Torresi, Biosens.
- 19 Bioelectron., 2010, 26, 890-893.
- 20 12 G. Wang, J. Zhou and J. Li, Biosens. Bioelectron., 2007, 22, 2921-2925.
- 21 13 M. S. Caves, B. K. Derham, J. Jezek and R. B. Freedman, *Biochemistry*, 2013, 52, 497-507.
- 22 14 H. Hamzah, Z. Zain, N. Musa, Y. Lin and E. Trimbee, J. Anal. Bioanal. Tech., 2013, 7, 2.
- 23 15 J. Yan, G. Springsteen, S. Deeter and B. Wang, Tetrahedron, 2004, 60, 11205-11209.
- 24 16 R. D. O'Neill, S.-C. Chang, J. P. Lowry and C. J. McNeil, *Biosens. Bioelectron.*, 2004, **19**, 1521-25 1528.
- 26 17 S. B. Hall, E. A. Khudaish and A. L. Hart, *Electrochim. Acta*, 1997, 43, 579-588.
- 27 18 Z. Huang, Y. Liu, F. Xie, Y. Fu, Y. He, M. Ma, Q. Xie and S. Yao, *Chem. Commun.*, 2012, 48, 12106.
- 29 19 H. Tang, F. Yan, Q. Tai and H. L. W. Chan, Biosens. Bioelectron., 2010, 25, 1646-1651.
- 30