Approach for quantitative analysis of vitamins D and B₉ and their

metabolites in human biofluids by on-line orthogonal sample preparation

and sequential mass spectrometry detection

Carlos Ferreiro-Vera^{a,b}, Feliciano Priego-Capote^{*a,b}, María Dolores Luque de Castro^{a,b}

^aDepartment of Analytical Chemistry, Annex C-3, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain. ^bInstitute of Biomedical Research Maimónides (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14071, Córdoba, Spain

Supplementary material

Supplementary Figure 1. pKa curves for polar target metabolites.

Supplementary Table 1. SPE sorbents evaluated to achieve the optimum retention of each vitamins and their metabolites.

Sorbent	Structure primary functional group	Description
CN (silica-based cyanopropyl phase)	$-\frac{ }{ }_{ } - (CH_2)_3 - C \equiv N$	A silica based cyanopropyl phase. Particle size 7 μm
C2 (silica-based ethyl phase)	$- \frac{1}{Si} - CH_2 - CH_3$	A silica based cyanopropyl phase. Particle size 7 μm
C8 (EC) (end-capped silica- based octyl phase)	$-\frac{1}{5}$ - (CH ₂) ₇ - CH ₃	An endcapped silica based octyl phase. Particle size 10 µm
C18 (EC) (end-capped silica- based octadecyl phase)	$-\frac{1}{5}$ - (CH ₂) - CH ₃	An end-capped silica based octadecyl phase. Particle size is 7 μm
C18 (HD) (high-density silica- based octadecyl phase)	— <mark> </mark> - Si — (СН ₂) — СН ₃	An end-capped, silica based phase with a high loading of octadecyl chains. The particle size is 7 μ m, spherical shape. This phase is less polar then HySphere C18 (EC).
resin GP (polymeric polydivinylbenzene phase)	CH-CH, CH-CH, CH-CH, CH-CH,	A polydivinyl-benzene. The particle size is 5-15 μ m, spherical shape. This polymer phase can be used for the extraction of a wide variety of compounds
resin SH (strong-hydrophobic modified polystyrene- divinylbenzene)		A modified polystyrene- divinylbenzene phase, 20-50µm particles, irregular shape. This highly porous polymer based resin adsorbs compounds hydrophobic very strongly. It is often used for the extraction of phenols and polar analytes or for the extraction of a wide range of all different compounds.
MM anion (mixed-mode phase containing a strong anion exchange functional group)		A mixed mode anion exchanger with a polydivinyl-benzene backbone. The average particle size is 10 µm. This polymer phase can be used for the extraction of organic acids.

Analyta	Precursor	Voltage	Product	Collision	Quantification	
Analyte	ion (<i>m/z</i>)	MS1 (V)	ion (<i>m/z</i>)	energy (eV)	transition	
			295.1	30		
24,25 (OH) ₂ D ₃	399.3	100	159.0	30	121.1	
			121.1	30		
			161.1	30		
1,25 (OH) ₂ D ₃	399.3	100	147.1	30	107.0	
			107.0	30		
			377.0	30		
25 OH D ₂	395.3	100	199.0	35	133.1	
			133.1	35		
			365.3	30		
25 OH D ₃	383.3	100	173.1	30	159.1	
			159.1	30		
			379.2	35		
D ₂	397.3	100	159.1	35	107.1	
			107.1	35		
			259.2	30		
D_3	385.3	100	147.1	35	107.1	
			107.1	35		
EA	442.2	140	295.1	17	205.1	
ГА	442.2	140	175.8	17	293.1	
a-pABGA	308.8	140	162.0	8	119.2	
pABGA	266.8	120	119.2	15	162.0	

Supplementary Table 2. Optimization of the MS/MS step for qualitative and quantitative determination of D and B_9 vitamins and their metabolites.

Analyte	Retention time (min)	Sample	Linear range ^a	Coefficient of regresion (R ²)	Limit of detection ^a	Limit of quantification ^a
24,25 (OH) ₂ D ₃	3.27	Serum	0.10-80	0.9996	0.03	0.10
		Breast milk	0.09–60	0.9999	0.03	0.09
		Urine	0.50-80	0.9967	0.15	0.50
1,25 (OH) ₂ D ₃	3.59	Serum	0.30-100	0.9986	0.09	0.30
		Breast milk	0.20-100	0.9996	0.06	0.20
		Urine	0.50-60	0.9930	0.15	0.50
25 OH D ₂	5.54	Serum	0.70–100	0.9989	0.21	0.70
		Breast milk	0.50-80	0.9958	0.15	0.50
		Urine	0.50-80	0.9998	0.15	0.50
	6.15	Serum	0.25-100	0.9984	0.07	0.25
25 OH D ₃		Breast milk	0.20–100	0.9936	0.06	0.20
		Urine	0.50-80	0.9980	0.15	0.50
D ₂	11.27	Serum	0.25-80	0.9975	0.15	0.25
		Breast milk	0.20-80	0.9953	0.06	0.20
		Urine	0.10-60	0.9921	0.03	0.10
D ₃	11.42	Serum	0.15-60	0.9985	0.04	0.15
		Breast milk	0.05-100	0.9965	0.02	0.05
		Urine	0.25-60	0.9978	0.08	0.25
	10.06	Serum	0.25-80	0.9999	0.08	0.25
FA		Breast milk	0.15-80	0.9996	0.04	0.15
		Urine	0.05-100	0.9999	0.02	0.05
	5.09	Serum	0.30-60	0.9998	0.09	0.30
a-pABGA		Breast milk	0.10-100	0.9997	0.03	0.10
		Urine	0.07-100	0.9991	0.02	0.07
		Serum	1-80	0.9999	0.30	1
pABGA	5.18	Breast milk	0.50-80	0.9973	0.15	0.50
		Urine	0.30–100	0.9987	0.09	0.30

Supplementary Table 3. Characteristics of the method.

^aExpressed as ng mL⁻¹.

		Spilrod	Analyta								
	Sample	Spiked	Analyte								
	Sumple	$(ng mL^{-1})$	$24,25(OH)_2D_3$	$1,25(OH)_2D_3$	25 OH D ₂	25 OH D ₃	D_2	D_3	FA	a-pABGA	pABGA
Intra-day variability (%)	Serum	2.5	3.4	4.8	4.7	3.1	2.8	0.6	1.9	2.8	0.4
		5	4.6	4.5	2.6	2.2	2.2	0.6	1.9	3.5	3.8
		10	2.9	1.0	2.8	4.1	4.1	1.2	1.5	3.3	4.9
	Milk breast	2.5	0.8	0.9	2.0	1.5	0.8	2.3	3.3	1.1	3.8
		5	0.5	4.1	0.3	3.9	2.4	3.1	0.2	1.6	3.6
		10	0.3	1.8	1.9	0.4	0.3	2.6	2.6	0.9	1.5
	Urine	2.5	0.1	4.0	4.1	2.9	2.7	1.6	0.7	0.7	1.0
		5	2.3	3.4	1.0	2.3	1.7	0.4	0.7	0.2	0.8
		10	0.4	1.9	1.2	3.8	1.7	3.0	2.1	0.8	1.3
Inter-day variability (%)	Serum	2.5	4.9	6.7	6.6	4.3	4.0	0.8	2.6	3.6	5.5
		5	6.5	6.3	3.7	6.5	3.1	0.9	2.7	4.0	5.3
		10	4.1	1.4	3.9	0.4	5.8	1.7	1.6	4.6	6.1
	Milk breast	2.5	1.2	1.4	2.9	2.2	1.1	3.2	4.6	1.6	5.3
		5	0.7	5.8	0.5	5.5	3.4	4.7	0.3	2.3	5.1
		10	0.3	2.5	2.6	0.6	0.4	3.6	3.6	1.2	2.2
	Urine	2.5	0.2	5.6	5.8	4.1	3.8	2.2	1.0	0.9	1.4
		5	3.2	4.8	1.4	3.2	2.4	0.5	1.0	0.2	0.3
		10	0.6	2.7	1.6	5.4	2.4	4.2	3.0	1.2	1.9

Supplementary Table 4. Repeatability (Sr), within-laboratory reproducibility (Swr), for each analyte.