# Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis

Arpita De, Jan van Nieuwkasteele, Edwin T. Carlen\*, Albert van den Berg

BIOS Lab on a Chip Group, Mesa+ Institute for Nanotechnology, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands

\*Corresponding author: Dr. Edwin Carlen, University of Twente, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands; Tel:+31 (0)53 489 5399; Fax: +31 (0)53 489 3595; Email: e.t.carlen@utwente.nl

# Sample injection design and testing protocol

A typical sample injection protocol using the microfluidic autosampler system is described. A sample plug injection from  $SR_1$  is injected into the microfluidic flow-cell with buffer from  $SR_2$ . Figure S1 shows the different valve positions that are automatically set as switch position A or B during the injection procedure.



Fig. S1 Automated sample injector protocol.

The protocol for the loading and injection of a single sample is described below:

Step 1 (Fig. S1a and Fig. S1b): System purge (microfluidic flow-cell not connected to  $T_4$ ):

1. Purge sample loop  $L_1$  with buffer ( $SR_2$ ,  $P_2=1$  bar;  $T_3+L_1+T_4$ ; Fig. S1a, switch pos. A)

2. Purge sample loop  $L_2$  with buffer (SR<sub>2</sub>,  $P_2$ =1 bar;  $T_3+L_2+T_4$ ; Fig. S1b, switch pos. B)

Step 2 (Fig. S1c, switch pos. B): Load sample 1 to loop  $L_1$ :

1. Load sample loop  $L_1$  with sample 1 ( $SR_1$ ,  $P_1$ =1 bar;  $T_1$ + $L_1$  to waste W)

2. Stop when sample appear at waste W outlet

Step 3 (Fig. S1d, switch pos. A): Injection of sample 1 ( $SR_1$ ):

- 1. Connect  $T_4$  to microfluidic flow-cell
- 2. Continue injecting buffer ( $SR_2$ ,  $P_3=1$  bar) through sample loop  $L_2$  and microfluidic flow-cell
- $(T_3+L_2+T_4+C_1+T_5)$  using maximum drive pressure, i.e.  $P_2=1$  bar
- 3. When sensor output is stable inject sample 1 ( $SR_2$ ,  $P_2$ ; $T_3+L_1+T_4+C_1+T_5$ )

The tubing lengths and diameters ( $T_3$ ,  $T_4$  and  $T_5$ ) are determined by the range of the regulated pressure source  $P_2$ and desired sample flow rate Q. The total equivalent hydraulic resistance  $R_{hyd}$  and the volumetric flow rate Q can be estimated with  $Q=\Delta P/R_{hyd}$ . The hydraulic resistance of a tube, or microchannel with circular cross-section is  $R_{hyd}\approx 8\mu L/\pi a^4$ , where  $\mu$  is the dynamic viscosity of the sample ( $\mu\approx 10^{-3}$  Pa s for water), L is the length, and a is the radius of the cross-section of the hydraulic component. Table A1 shows typical hydraulic resistances for the various tubing and microchannel.

| -                                                  |     |              |      |                         |
|----------------------------------------------------|-----|--------------|------|-------------------------|
| Tube                                               | ¢   | $2 \times a$ | L    | <b>R</b> <sub>hyd</sub> |
|                                                    | μm  | μm           | m    | Pa s m <sup>-3</sup>    |
| $T_{3}(R_{3})$                                     | 360 | 50           | 0.2  | $1.2 \times 10^{15}$    |
| $T_4(R_4)$                                         |     | 150          | 3.1  | $2.4 \times 10^{14}$    |
| $L_{1},L_{2}$<br>(R <sub>1</sub> ,R <sub>2</sub> ) |     | 150          | 1.6  | 1.2×10 <sup>14</sup>    |
| $C(R_c)$                                           | -   | 360          | 0.01 | $2.8 \times 10^{10}$    |
| $T_5(R_5)$                                         | 700 | 500          | 0.03 | $1.9 \times 10^{10}$    |

Figure S2 shows an equivalent hydraulic circuit diagram of the hydraulic system, where  $R_3$  is the resistance of tube  $T_3$ ,  $R_L$  is the resistance of the loop  $L_1$  and  $L_2$ ,  $R_4$  is the resistance of tube  $T_4$  and  $R_c$  is the resistance of the microfluidic flow-cell microchannel. The volumetric flow



Fig. S2 Equivalent hydraulic circuit diagram.

rate is estimated with  $Q \approx P_2/R_{hyd}$ , where  $R_{hyd} = R_3 + R_L + R_4 + R_c + R_5$ . The average flow speed in the circular tube is estimated with  $v_s \approx Q/\pi a^2$ . Table A2 shows flow speed estimations for different applied pressures.

| $P_2$ | Q                    | vs                 |
|-------|----------------------|--------------------|
| Bar   | µl min <sup>-1</sup> | mm s <sup>-1</sup> |
| 1.0   | 3.75                 | 0.61               |
| 0.5   | 1.88                 | 0.31               |
| 0.3   | 1.16                 | 0.19               |

**Table S2** Flow rates and flow speeds.

### Silicon nanowire sensor sample flowrate dependence

The silicon nanowire (Si-NW) sensors are known to be sensitive to flow rate changes due to streaming potential changes on the sensor surface (Kim et al., 2009). Figure S3 shows examples for Si-NW sensor responses to changes in the flow rate in the integrated microfluidic flow-cell. Figure S3a shows that the measured current can change by about 80% when the driving pressure is switched from  $P_1=1$  bar to  $P_2=0$  bar using a deionized water sample. Figure S3b shows about 14% change in current response as the driving pressure is switched from



**Fig. S3** Measured Si-NW sensor current to flow rate changes in a microfluidic flow-cell. (a) Deionized water flow rate change as driving pressure is changed from  $a_1 (P_1=1 \text{ bar})$  to  $a_2 (0 \text{ bar})$  and then  $a_3 (P_1=1 \text{ bar})$ . (b) Flow rate of 1 mM NaCl buffer as driving pressure is changed from  $b_1 (P_1=1 \text{ bar})$  to  $b_2 (P_1=0.5 \text{ bar})$  to  $b_3 (P_1=0.2 \text{ bar})$  to  $b_4 (P_1=0.1 \text{ bar})$  and  $b_5 (P_1=1 \text{ bar})$ . (c) Injector switch of 1 mM NaCl buffer from  $c_1 (SR_1, P_1=0.2 \text{ bar})$  to  $c_2 (SR_2, P_2=0.2 \text{ bar})$ .

 $P_1$ =1 bar to  $P_1$ = 0.1 bar in a buffer solution containing 1 mM NaCl. These results are consistent with previous reports, i.e. decreases in the flow rate result in a decrease in conductance of p-type Si-NW devices and increased ionic strength reduces the effect of conductance changes from sample flow rate changes.<sup>1</sup> Figure S3c shows that flow rate changes due to sample switching can be eliminated with the automated multi-sample injection system and pressure driven flow, as described in the accompanying article.

#### Silicon nanowire sensor configurations

Figures S4a-c show optical microscopy images of the different device types used for experiments in this article.



**Fig. S4** Microscopy images of fabricated Si-NWs. (a) 2-wire Si-NW device. (b) 16-wire Si-NW device. (c) Differential Si-NW device with split source contact.

#### Silicon nanowire device physics and operation

The conductance change for Si-NWs biased in the depletion region can be approximated with  $\Delta G \approx q \mu_b N_a L^{-1} \Delta \xi$ , where  $\Delta \xi \approx (W-(2)^{1/2} \Delta f_d) (a-(2/3)^{1/2} \Delta f_d)$  is the area of the conductance cross-section of the triangular Si-NW with width W and height a, which is modulated by a depletion length function  $\Delta f_{\rm d} \approx (\gamma^2 t_{\rm ox}^2 + 2\varepsilon_{\rm Si}\varepsilon_{\rm o}(V_{\rm fg}-\Delta V_{\rm fb})/qN_{\rm a})^{1/2}$ - $\gamma^2 t_{ox}^2$  with  $\gamma = \varepsilon_{Si} \varepsilon_{ox}^{-1}$ , where  $\varepsilon_{Si}$  and  $\varepsilon_{ox}$  are the permittivities of silicon and silicon dioxide, respectively,  $t_{ox}$  is the gate-oxide thickness, and finally the flatband voltage change is proportional to the surface potential change  $\Delta V_{\rm fb} = \zeta - \Delta \psi_o \text{ with } \zeta = E_{\rm ref} - q^{-1} \phi_{\rm Si} - Q_{\rm f} C_o^{-1} - Q_{\rm ss} C_o^{-1} + \chi^{\rm sol} \text{ where } E_{\rm ref} \text{ is the reference electrode potential, } q^{-1} \phi_{\rm Si} \text{ is the work}$ function of silicon,  $Q_{\rm f}$  and  $Q_{\rm ss}$  are the fixed charge and interface states near the gate-oxide/silicon interfaces, respectively,  $C_0 = \varepsilon_{\rm Si} \varepsilon_0 t_{\rm ox}^{-1}$  is the gate-oxide capacitance and  $\chi^{sol}$  is the surface dipole potential of the sample solution. The flatband voltage provides a direct physical link between  $\Delta \psi_o$  and  $\Delta G$ . It has been assumed that the buried-oxide/silicon interface is not depleted and the back-gate is not electrostatically coupled to the front-gate, which is accomplished in practice by choosing an appropriate  $V_{bg}$ . This brief overview of the basic physical principles of the FET Si-NW sensor operation highlight a few important points that are useful to summarize: i. the application of a dual gate biasing configuration with a reference electrode in the sample buffer ensures optimal and reproducible device behavior; ii. the sensor surface should be well cleaned (e.g. short duration UV ozone) and the detrimental effects from  $Q_{\rm f}$  and  $Q_{\rm ss}$  at the gate-oxide/silicon interface minimized through thermal annealing; and iii. The contact resistance of the drain and source contacts should be minimized such that it represents a small fraction of the total quiescent sensor resistance.

#### Nanoscale imaging

Si-NW samples were prepared for high resolution TEM imaging by depositing a 100 nm thick silicon nitride protection layer onto the upper surface. The sample slices we prepared in a dual-beam focused ion beam (FEI Tecnai G2 F20 X-Twin FEG TEM, Maser Engineering, Enschede, The Netherlands) and transferred to a TEM imaging grid. TEM imaging (FEI 3D-Strata DB-FIB FEG, Maser Engineering, Enschede, The Netherlands) was operated at 200 kV acceleration voltage. Prior to high resolution SEM imaging the Si-NW samples were coated with a Au/Pd thin film to reduce charging of the top oxide surface. SEM imaging (LEO 1550, Zeiss) was performed at acceleration voltages ranging from 2 kV to 10 kV. A Digital Instruments Dimension 3100 AFM

was used to measure the Si-NW dimensions. All AFM images performed in tapping mode with ultra sharp (average tip diameter ~2 nm) single crystal silicon tips (SSH-NCH-10, NanoandMore, GmbH).



Fig. S4 High-resolution TEM Si-NW cross-section.

## References

1. D.R. Kim, C.H. Lee and X.L. Zheng, Nano Lett., 2009, 9, 1984.