Supporting Information

Boronic acid-functionalized detonation nanodiamond for specific enrichment of glycopeptides in glycoproteome analysis

Guobin Xu¹, Wei Zhang¹, Liming Wei*, Haojie Lu, Pengyuan Yang*

Institutes of Biomedical Sciences & Department of Chemistry, Fudan University, Shanghai 200032, China

*Corresponding author, <u>weiliming@fudan.edu.cn</u>, pyyang@fudan.edu.cn

Tel: -86-21-5423-7961 Fax: -86-21-5423-7961

¹ These authors contribute equally to this work.

Table S1. Detailed information of the observed glycopeptides obtained from tryptic bovine fetuin
 [1]

Peak	Observed	Theoretical	Theoretical peptides sequence	Theoretical	Glycan
number	m/z	peptide mass		glycan	structure
				mass	
No. 1	1742.0	1742.0	¹⁴⁵ LC ^a PDC ^a PLLAPLN#DSR ¹⁵⁹		
No. 2	1945.2	1742.0	¹⁴⁵ LC ^a PDC ^a PLLAPLN#DSR ¹⁵⁹	203.2	HexNAc ₁
No. 3	2837.0	1742.0	¹⁴⁵ LC ^a PDC ^a PLLAPLN#DSR ¹⁵⁹	1095.9	Hex ₃
					HexNAc ₃
No. 4	2999.3	1742.0	¹⁴⁵ LC ^a PDC ^a PLLAPLN#DSR ¹⁵⁹	1258.0	Hex ₄
					HexNAc ₃
No. 5	3364.6	1742.0	¹⁴⁵ LC ^a PDC ^a PLLAPLN#DSR ¹⁵⁹	1623.4	Hex ₅
					HexNAc ₄
No. 6	3729.6	1742.0	¹⁴⁵ LC ^a PDC ^a PLLAPLN#DSR ¹⁵⁹	1988.7	Hex ₆
					HexNAc ₅
No. 7	3017.3		¹⁶⁰ VVHAVEVALATFNAES N# GSY		
			LQLVEISR ¹⁸⁷		
No. 8	3219.8	3017.3	¹⁶⁰ VVHAVEVALATFNAES N# GSY	203.2	HexNAc ₁
			LQLVEISR ¹⁸⁷		
No. 9	3857.5	3670.8	⁷² RPTGEVYDIEIDTLETTCHV	185.2	HexNAc ₁ -H ₂ O
			LDPTPLAN#C ^a SVR ¹⁰³		
No. 10	4274.6	3017.3	¹⁶⁰ VVHAVEVALATFNAES <mark>N#</mark> GSY	1258.0	Hex ₄
			LQLVEISR ¹⁸⁷		HexNAc ₃
No. 11	4639.7	3017.3	¹⁶⁰ VVHAVEVALATFNAES N# GSY	1623.4	Hex ₅

			LQLVEISR ¹⁸⁷		HexNAc ₄
No. 12	4842.7	3017.3	¹⁶⁰ VVHAVEVALATFNAES N# GSY	1826.6	Hex ₅
			LQLVEISR ¹⁸⁷		HexNAc ₅
No. 13	5004.6	3017.3	¹⁶⁰ VVHAVEVALATFNAESN#GSY	1988.7	Hex ₆
			LQLVEISR ¹⁸⁷		HexNAc ₅
No. 14	5294.5	3670.8	⁷² RPTGEVYDIEIDTLETTCHV	1623.4	Hex ₅
			LDPTPLAN#C ^a SVR ¹⁰³		HexNAc ₄
No. 15	5659.5	3670.8	⁷² RPTGEVYDIEIDTLETTCHV	1988.7	Hex ₆
			LDPTPLAN#C ^a SVR ¹⁰³		HexNAc ₅
No. 16	2755.5	2755.5	⁷⁹ DIEIDTLETTCHVLDPTPLA	-	-
			N# CSVR ¹⁰³		

Table S2. Detailed information of the observed glycopeptides obtained from tryptic horseradish peroxidase (HRP) [2]

Peak	Observe	Theoretic	Theoretical peptides sequence	Theoretic	Glycan structure
numbe	d m/z	al peptide		al glycan	
r		mass		mass	
No. 1	2069.6	898.5	⁴² P N #VSNIVR ⁴⁹	1171.3	Hex ₃ HexNAc ₂ dHex ₁ P
					ent ₁
No. 2	2533.7	2182.9	²⁹⁵ SFAN#STQTFFNAFVEAMDR ³¹³	349.5	HexNAc ₁ Pent ₁
No. 3	2591.9	1420.6	²²⁵ PTL N #TTYLQTLR ²³⁶	1171.3	Hex ₃ HexNAc ₂ dHex ₁ P
					ent ₁
No. 4	2706.0	2501.2	²⁷² GLIQSDQELFSSP N #ATDTIP	203.2	HexNAc ₁
			LVR ²⁹⁴		
No. 5	2851.7	2501.2	²⁷² GLIQSDQELFSSP N #ATDTIP	349.5	HexNAc ₁ Pent ₁
			LVR ²⁹⁴		
No. 6	3339.7	2168.4	³¹ QLTPTFYDNSCP N #VSNIVR ⁴⁹	1171.3	Hex ₃ HexNAc ₂ dHex ₁ P
					ent ₁
No. 7	2255 5	2182.9	²⁹⁵ SFAN#STQTFFNAFVEAMDR ³¹³	1171.3	Hex ₃ HexNAc ₂ dHex ₁ P
	5555.5				ent ₁
No. 8	3527.9	2501.2	²⁷² GLIQSDQELFSSP N #ATDTIP	1026.6	Hay HayNA a dHay
			LVR ²⁹⁴	1020.0	nex ₃ nexivAc ₂ unex ₁
No. 9	3673.1	2501.2	²⁷² GLIQSDQELFSSP N #ATDTIP	1171.3	$Hex_3HexNAc_2dHex_1P$
			LVR ²⁹⁴		ent ₁
No. 10	3750.5	2725.2	⁶⁹ LHFHDCFVNGCDASILLD <mark>N#</mark> T	1026.6	Hey-HeyNAc-dHey.
			TSFR ⁹²	1020.0	TICK3TICKIVAC2UTICK]
No. 11	3896.1	2725.2	⁶⁹ LHFHDCFVNGCDASILLD <mark>N#</mark> T	1171.3	Hex ₃ HexNAc ₂ dHex ₁ P
			TSFR ⁹²		ent ₁
No. 12	4164.6	2642.3	²¹⁴ LY N# FSNTGLPDPTL N TTYLQT	1522.2	Hex ₃ HexNAc ₃ dHex ₁ P
			LR ²³⁶	1522.2	ent ₂
No. 13	4223.6	3071.8	³¹ QLTPTFYDNSCP N #VSNIVR ⁴⁹	1171.3	Hex ₃ HexNAc ₂ dHex ₁ P

			¹¹⁵ AAVESACPR ¹²³		ent ₁
No. 14	4840.1	2642.3	²¹⁴ LY N #FSNTGLPDPTLNTTYLQT	2107.6	Hex ₆ HexNAc ₄ dHex ₂ P
			LR ²³⁶	2197.0	ent ₁
No. 15	4986.1	2642.3	²¹⁴ LY N #FSNTGLPDPTLNTTYLQT	22427	Hex ₆ HexNAc ₄ dHex ₂ P
			LR ²³⁶	2343.7	ent ₂

Fig. S1 MALDI mass spectra of glycopeptides ¹⁶⁰VVHAVEVALATFNAESN#GSY LQLVEISR¹⁸⁷ consists of partially ¹⁸O labeled N#. The mass spectrum of this glycopeptide not labeled by ¹⁸O (a) or 100% labeled by ¹⁸O (b). The isotope distribution of this peptide is 3017 (61.6%): 3018 (100%): 3019 (86.1%): 3020 (51.9%). Define x= the intensity of this peptide from the first part (the release of the glycans with PNGaseF in H₂O) AND y= the intensity of this peptide from the second part (the capture of the glycopeptides using dND-p-APBA and eluting them and then releasing the glycans with PNGaseF in H₂¹⁸O). So y/x represents the recovery of glycopeptides. Based on the first and the third peak, we got a group of equations: 0.62 x = 5694.1 and 0.86 x + 0.62 y = 11007.8, educed y/x = 54.6%. As the same, based on the second and the fourth peak, we got another group of equations: x= 8054.9 and 0.52 x+ y= 11415.7, educed y/x = 89.6%. In sum, the average recovery of glycopeptides is 72.2% [3].

Fig. S2 RPLC chromatogram of the digest of mouse liver extract. One fraction is indicated with arrow at 10–14 min (1#). Mobile phase A consisted of 0.1% FA in water and mobile phase B consisted of 0.1% FA in ACN (all v/v). The flow rate was 0.8 mL/min. The separation was performed using gradient conditions as follows: 0% B increased up to 50% B in 30 min, then linearly increased to 90% B in 60 min, maintained at 90% B for 10 min for washing the column, and then ramped down to 0% B for equilibrium. Effluents were started to collect after 10-min gradient elution, and 25 RPLC fractions were collected every 2 min (1.6 mL) continuously regardless of the eluting profile shape. On column UV detection for RPLC was carried out at 215 nm using a SPD-20A UV Detector (Shimadzu Co.), and then all fractions dried by lyophilization.

Fig. S3 MS/MS spectra of de-glycosylated peptides, the de-glycosylated peptide of corticosteroid 11-beta-dehydrogenase isozyme 1 QSN#GSIAVISSLAGK ($(M+2H)^{2+}$, m/z=943.83), #-labeled to the amino acid of N-glycosylated modification.

Protein IPI	Discription	site	peptides sequence	Swiss-prot note
IPI00776266.1	Protein	43	C.N#GSIPSDLAISGLLPYWMR.D	
IPI00110849.1	H-2 class II histocompatibility antigen, A-K alpha chain	105	K.RSN#STPATNEAPQATVFPKSPVLLGQPNT.L	
IPI00111908.8	Carbamoyl-phosphate synthase [ammonia]	861	K.ALENN#MSLDEIVR.L	
IPI00115599.6	Corticosteroid 11-beta-dehydrogenase isozyme 1	162	K.QSN#GSIAVISSLAGK.M	potential
IPI00116591.1	Short-chain specific acyl-CoA dehydrogenase	180	R.EEGDSWVLN#GTK.A	
IPI00116591.1	Short-chain specific acyl-CoA dehydrogenase	159	K.IGCFALSEPGN#GSDAGAASTTAR.E	
IPI00116603.1	Ornithine carbamoyltransferase	240	K.LAEQYAKEN#GTKLSMTN.D	
IPI00117312.1	Aspartate aminotransferase	164	R.DVFLPKPSWGN#HTPIFR.D	
IPI00117857.2	Alpha-1-antitrypsin	70	S.N#TSNIFFSPVSIATAFAMLSLGSK.G	yes
IPI00117914.3	Arginase 1	60	R.DHGDLAFVDVPN#DSSFQIVK.N	
IPI00118625.1	Histidine ammonia-lyase	307	K.EGLALIN#GTQMITSLGCEALER.A	
IPI00118899.1	Alpha-actinin-4	680	R.ISIEMN#GTLEDQLSHLK.Q	
IPI00119114.2	Long-chain specific acyl-CoA dehydrogenase	198	R.SGSDWIL N #GSK.V	
IPI00120832.1	Major urinary protein 3	66	R.AFVEN#ITVLENSLVFK.F	yes
IPI00122048.2	Sodium/potassium-transporting ATPase subunit alpha-3	628	K.GVGIISEGN#ETVEDIAAR.L	
IPI00126253.1	LAG1 longevity assurance homolog 2	19	R.LWLPVN#LTWA.D	yes
IPI00131830.1	Serine protease inhibitor A3K	105	F.N#LTETPEADIHQGFGNLLQSLSQPEDQDQINIGNAMFIEK.D	potential
IPI00134691.3	UDP-glucuronosyltransferase 1-1	89	E.N#VTATLVELGR.T	potential
IPI00134691.3	UDP-glucuronosyltransferase 1-2	89	K.EN#VTATLVELGR.T	potential
IPI00135686.2	Peptidyl-prolyl cis-trans isomerase B	148	K.DTN#GSQFFITTVK.T	
IPI00154054.1	Acetyl-CoA acetyltransferase, mitochondrial	272	K.EN#GTITAANASTLNDGAAALVLMTAEAAQR.L	
IPI00154054.1	Acetyl-CoA acetyltransferase, mitochondrial	272	K.TVFQKEN#GTITAAN.A	
IPI00154054.1	Acetyl-CoA acetyltransferase, mitochondrial	272	K.TVFQKENGTITAAN#ASTLNDGAAALVLMTAEAAQR.L	

Table S3 N-glycosylation sites and glycoprotein identified from the RPLC fraction 1# with dND-p-APBA specific enrichment followed by LC-MS/MS

IPI00154056.1	Lysosomal acid phosphatase	322	H.IFELYQEDNGN#FSVEMYFR.N	potential
IPI00265576.6	Simliar to calmodulin	181	D.GN#GTIDFPEFLTMMAR.K	
IPI00308885.6	60 kDa heat shock protein, mitochondrial	426	R.VTDALN#ATR.A	
IPI00318595.1	Endoplasmic reticulum aminopeptidase 1	655	K.N#ETEIMPIFQALNELIPMYK.L	potential
IPI00321190.1	Sulfated glycoprotein 1	80	K.TVVTEAGNLLKDN#ATQEEILHYLEK.T	potential
IPI00330670.6	Tripartite motif-containing protein 69	458	R.RVGVYLDYEGGQVSFYN#AT.T	
IPI00336324.11	Malate dehydrogenase, cytoplasmic	26	Y.SLLYSIGN#GSVFGK.D	
IPI00379304.4	Peroxiredoxin 6	42	R.N#FTPVCTTELGR.A	
IPI00461964.3	Methylmalonate-semialdehyde dehydrogenase	445	K.IVNDNPYG N #GTAIFTTNGATAR.K	
IPI00461964.3	Methylmalonate-semialdehyde dehydrogenase	445	N.DNPYGN#GTAIFTTNGATAR.K	
IPI00462140.1	Keratin, type II cytoskeletal 1b	206	K.WELLQQVN#TSTR.T	
IPI00469218.1	Lysosomal membrane glycoprotein 1	296	R.LN#MTLPDALVPTFSIS.N	
IPI00554989.3	Peptidyl-prolyl cis-trans isomerase	108	K.HTGPGILSMANAGPNTN#GSQFFICTAK.T	
IPI00554989.3	Peptidyl-prolyl cis-trans isomerase	108	K.HTGPGILSMANAGPNTN#GSQFF.I	
IPI00555140.2	Phosphoglucomutase-1	132	K.FN#ISNGGPAPEAITDK.I	
IPI00624663.3	Alpha-2-macroglobulin	382	K.N#ITSVVSPLGYLSIFTTDEHGLA.N	potential
IPI00659793.3	Dehydrogenase E1 and transketolase domain containing 1	266	K.N#GSGLDWATAETLALGSLLAQGFNVR.L	

Fig. S4 MS/MS spectra of de-glycosylated peptides, the de-glycosylated peptide of Sulfated glycoprotein 1 TVVTEAGNLLKDN#ATQEEILHYLEK ($(M+3H)^{3+}$, m/z=716.89), #-labeled to the amino acid of N-glycosylated modification.

References for supporting information

[1] Y. Kanie, A. Enomoto, S. Goto, O. Kanie, Carbohydrate Res. 343 2008, 343, 758-768.

[2] Wuhrer M., Hokke C. H., Deelder A. M. Rapid Commun. Mass Spectrom. 2004, 18, 1741-1748.

[3] Xu Y., Wu Z., Zhang L., Lu H., Yang P. Webley P. A., Zhao D. Anal. Chem. 2009, 81, 503-508.