Supporting Information

Chemiluminescence Assay for Sensitive Detection of Iodide Based on

Extracting Hg²⁺ from T-Hg²⁺-T Complex

Tao Li,^{† a} Gang Liang^{† a,b} and Xiaohong Li^{†* a}

Department of Chemistry, Beijing Normal University, Beijing, China, 100875

*Corresponding Authors: Xiaohong Li (<u>lxhxiao@bnu.edu.cn</u>)

Hg²⁺ detection

0.1 μ M DNA solution was prepared in Tris-ClO₄ buffer (20 mM, pH = 9.0). Different concentrations of Hg²⁺ were respectively added to the solution for 30 min. Then to this solution was added K⁺ (final concentration 20 mM). After 30 min, hemin (final concentration 0.15 μ M) was added for another 1h at room temperature. Finally, luminol (0.5 mM) and H₂O₂ (10 mM) were added to the solution immediately for chemiluminescence measurements. The final concentrations of Hg²⁺ varied from 10 pM to 10 μ M.

In the absence of Hg^{2+} , 20 mM K⁺ induced 0.1 μ M G-rich single-stranded DNA to form K⁺stabilized G-quadruplex (with hemin as a cofactor), which could catalyze H_2O_2 -mediated oxidation of luminol and produce a chemiluminecence at 421 nm (curve a) as shown in Figure S1A. With the concentration of Hg^{2+} increased, the chemiluminescence at 421 nm was decreased until no change was observed when 5 μ M Hg^{2+} was used (from curve a to i). The change of the chemiluminescence intensity (Δ I) as a function of the logarithm of Hg^{2+} concentration was shown in Fig. S1B. Thus, it was believed that 5 μ M Hg^{2+} was enough to induce 0.1 μ M G-rich single-stranded DNA to form the stem-loop structure containing T- Hg^{2+} -T.

Fig. S1. (A) Chemiluminescence intensity generated by (a) hemin + DNA; (b-i) hemin + DNA in the presence of different concentrations of Hg²⁺: 10⁻¹¹, 10⁻¹⁰, 10⁻⁹, 10⁻⁸, 10⁻⁷, 10⁻⁶, 5×10⁻⁶, 10⁻⁵ M. (B) The derived calibration curve corresponding to the relative chemiluminescence intensity ΔI , (ΔI =I-I₀, I₀ and I are chemiluminescence intensities in the absence and the presence of Hg²⁺, respectively) at λ = 421 nm. Error bars were derived from three individual measurements. Experimental conditions: 0.1 µM DNA, 0.15 µM hemin, 0.5 mM luminol, 10 mM H₂O₂ and 20 mM K⁺ in 20 mM Tris-ClO₄ buffer (pH = 9.0).

Table S1. Determination of I ⁻ in lake water sample		
Iodide added (mol/L)	Iodide found (mol/L)	
	Proposed method	ICP
0	—	
1×10 ⁻⁶	0.93×10 ⁻⁶	1.103×10^{-6}
5×10 ⁻⁶	4.87×10^{-6}	5.137×10^{-6}
1×10 ⁻⁵	1.1×10 ⁻⁵	1.026×10^{-5}