Electronic Supporting Information for

Reversible binding and quantification of heparin and chondroitin sulfate in water using redoxstable biferrocenylene SAMs

Kun Chen^a, Michael Schmittel,*^a

Center of Micro- and Nanochemistry and Engineering Universität Siegen, Organische Chemie I, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany

Table of Contents

Chemicals	Page 1
Stability of β -(11-mercaptoundecyl)-BFD SAMs in Tris-Cl buffer solution	Page 2
Stability of β -(11-mercaptoundecyl)-BFD SAMs in Tris-NO ₃ buffer solution	Page 2
Linear relationship between anodic peak and scan rate in Tris-NO ₃ buffer solution	Page 2
Response of β -(11-mercaptoundecyl)-BFD SAMs toward other biological anions	Page 3-4
Effect of scan rate on the binding of β -(11-mercaptoundecyl)-BFD SAMs with heparin	Page 5
SPR measurements	Page 6
Electrochemical detection of heparin in blood plasma	Page 7
CV and SWV of β -(11-mercaptoundecyl)-BFD SAMs in presence of chondroitin sulfate	Page 8
Titration curve of β -(11-mercaptoundecyl)-BFD SAMs toward chondroitin sulfate	Page 8
Buffer solutions used for potential measurement in presence of different anions	Page 9

Chemicals

Chondroitin sulfate (mixture of 4- and 6-sulfate), hyaluronic acid, phytic acid sodium salt and bovine blood plasma (3.8% trisodium citrate as anticoagulant) were obtained from Sigma-Aldrich. Heparin (IU \geq 100/mg), H₂AMP and Na₂H₂ATP were purchased from Alfa Aesar.

Fig. S1 CV curves of β -(11-mercaptoundecyl)-BFD SAMs in Tris-Cl buffered solution (pH = 7.24 ± 0.10, 0.01 M Tris-Cl, 0.1 M NaCl) immediately (black) after immersion and after 180 min of immersion (red). Scan rate = 100 mV/s.

Fig. S2 CV curves of β -(11-mercaptoundecyl)-BFD SAMs immersion in Tris-NO₃ buffered solution (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃) immediately (black) after immersion and after 180 min of immersion (red). Scan rate = 100 mV/s.

Fig. S3 Linear relationship of the main anodic peak current (\blacksquare) and shoulder anodic peak current (\bullet) with scan rates of β -(11-mercaptoundecyl)-BFD SAMs in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃) from 25 mV/s to 2500 mV/s.

Fig. S4 CV curves of β -(11-mercaptoundecyl)-BFD SAMs in absence (black) and presence of 0.7 g/L sodium phytate (red) in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃). Scan rate = 100 mV/s

Fig. S5 CV curves of β -(11-mercaptoundecyl)-BFD SAMs in absence (black) and presence of 0.4 g/L hyaluronic acid (red) in the Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃). Scan rate = 100 mV/s.

Fig. S6 CV curves of β -(11-mercaptoundecyl)-BFD SAMs in absence (black) and presence of 0.3 g/L H₂AMP (red) in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃). Scan rate = 100 mV/s.

Fig. S7 CV curves of β -(11-mercaptoundecyl)-BFD SAMs in absence (black) and presence of 0.6 g/L Na₂H₂ATP (red) in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃). Scan rate = 100 mV/s.

Fig. S8 CVs of β -(11-mercaptoundecyl)-BFD SAMs in blank Tris-NO₃ buffer (black) and in Tris-NO₃ buffer + 6.4 × 10⁻³ g/L heparin (red) at different scan rates: (a) 25 mV/s; (b) 75 mV/s; (c) 100 mV/s; (d) 150 mV/s; (e) 1000 mV/s and (f) 2000 mV/s (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃).

Fig. S9 Left: SPR measurements of neutral of β -(11-mercaptoundecyl)-BFD SAMs in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃) with 0.6 g/L heparin (red) and without (black). Right: Enlarged picture of SPR measurements (Incident angle from 66° to 72°).

Fig. S10 Left: SPR measurements of monooxidised β -(11-mercaptoundecyl)-BFD SAMs in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃) with 0.6 g/L heparin (red) and without (black). Right: Enlarged picture of SPR measurements (Incident angle from 66° to 72°).

Fig. S11 SWV curves of β -(11-mercaptoundecyl)-BFD SAMs in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃) in presence of heparin (6.4 × 10⁴ g/L) after 1 min (black) and 30 min of immersion (red).

Fig. S12 CV curves of a β -(11-mercaptoundecyl)-BFD SAM immersed into a bovine plasma sample (diluted 50x by adding a Tris-NO₃ buffered solution): Scan rate = 100 mV/s; the black trace was recorded immediately after immersion and the red trace after 180 min of immersion. Buffer: pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃.

Fig. S13 Cathodic SWV curves of a β -(11-mercaptoundecyl)-BFD SAM upon generating defined concentrations of heparin in the diluted bovine plasma sample (for details, see caption of Fig. S12).

Fig. S14 CV curves of β -(11-mercaptoundecyl)-BFD SAMs upon addition of various amounts of chondroiton sulfate in Tris-NO₃ buffer solution (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃). Scan rate = 100 mV/s.

Fig. S15 Cathodic SWV curves of β -(11-mercaptoundecyl)-BFD SAMs after addition of various amounts of chondroitin sulfate in the Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃).

Fig. S16 Titration curve for β -(11-mercaptoundecyl)-BFD SAMs and concentration of chondroitin sulfate in Tris-NO₃ buffer (pH = 7.24 ± 0.10, 0.01 M Tris-NO₃, 0.1 M NaNO₃). Δ Current *vs.* logarithm of *c*_{Chondroitin} (g/L) shows a good linear relationship from 5.0 × 10⁻⁵ g/L to 2.5 × 10⁻³ g/L.

Buffer system	Concentration of	Acid	Acid pH	Concentration of
	Tris			electrolyte
Tris-PF ₆	0.01 M	HPF ₆	7.24 ± 0.10	0.1M NaPF ₆
Tris-BF ₄	0.01 M	HBF_4		0.1M NaBF ₄
Tris-ClO ₄	0.01 M	HClO ₄		0.1M NaClO ₄
Tris-NO ₃	0.01 M	HNO ₃		0.1M NaNO ₃
Tris-Cl	0.01 M	HCl		0.1M NaCl

 Table S1
 The buffer solutions used for potential measurement in presence of different anions