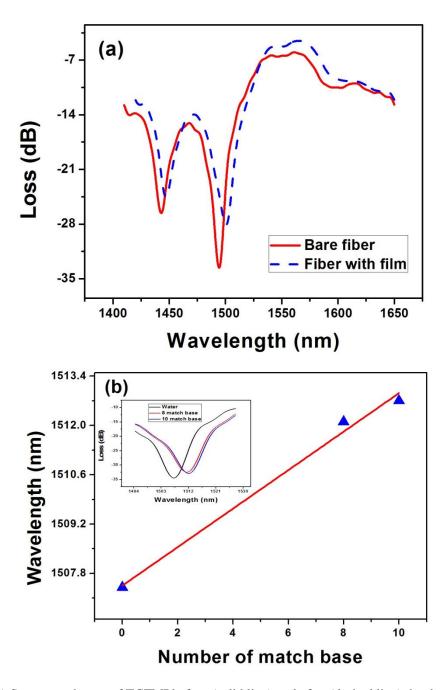
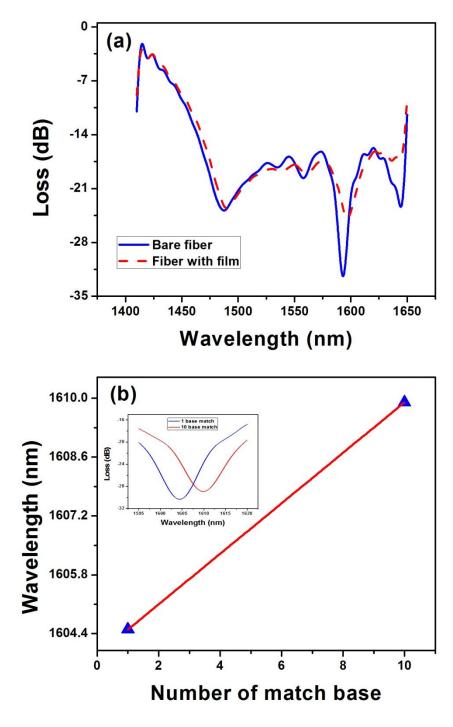
Label-free, disposable fiber-optic biosensor for DNA hybridization detection

Ming-jie Yin¹*, Chuang Wu¹, Li-yang Shao ¹, Wing Kin Edward Chan¹, A. Ping Zhang², Chao Lu³ and Hwa-yaw Tam¹


¹Photonics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

² Center for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China


³Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

1

^{*}Corresponding author: M.J. Yin: Tel: +852-27664678; E-mail: yinmingjie0316@qq.com

Fig. S1 (a) Spectrum change of TCFMI before (solid line) and after (dashed line) the deposition of (PEI/PAA)₄(PEI/DNA)₁ multilayer film. (b) Wavelength shift of TCFMI-based DNA sensor in target DNA solution with match base number 8 and 10.

Fig. S2 (a) Spectrum change of TCFMI before (solid line) and after (dashed line) the deposition of (PEI/PAA)₄(PEI/DNA)₁ multilayer film. (b) Wavelength shift of TCFMI-based DNA sensor in target DNA solution with match base number 10.