Electronic Supplementary Information

Dithiocarbamate-capped silver nanoparticles as a resonance light

scattering probe for simultaneous detection of lead(II) ions and

cysteine

Haiyan Cao,^a Minghong Wei,^a Zhaohui Chen,^{*a,b} Yuming Huang^{* a}

^a State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
E-mail: ymhuang@swu.edu.cn
^b Basic Department of Rongchang Campus, Southwest University, Chongqing 402460, China. E-mail: zhaohuic@swu.edu.cn

charges of the DTC-Ag NPs.				
Concentration of Pb ²⁺	Average particle size	Zeta Potential		
(µM)	(nm)	(mV)		
0	26.95	-46.7		
1	28.88	-34.6		
10	246.1	-26.7		
100	1024.8	19.1		

Table S1. The effect of Pb²⁺ concentration on the hydrodynamic diameter and surface

Table S2. The effect of cysteine concentration on the hydrodynamic diameter and surface charges of the DTC-Ag NPs in the presence of 20 μ M Pb²⁺.

Concentration of cysteine	Average particle size	Zeta Potential
(µM)	(nm)	(mV)
0	298.5	-18.7
0.2	186.1	-21.7
2	168.5	-27.2
20	41.4	-32.7

System	Detection limit (µM)	Analytical methods	References
Thiol-capped CdTe QDs	0.27	Fluorescence	1
Glutathione-functionalized Au NPs	0.1	Colorimetric	2
DNAzyme-functionalized Au NPs	0.1	Colorimetric	3
Pentapeptide-Au NPs	0.1	Colorimetric	4
Gallic acid-Au NPs	0.025	Colorimetric	5
Functionalized fluorescent Au NDs	0.002	Fluorescence	6
Podand triazole-linked Au NPs	7	Colorimetric	7
Gallic acid-Au NPs or Ag NPs	5	Colorimetric	8
dsDNA-Cu NPs	0.005	Fluorescence	9
di-(2-picolyl) amine (DPA) substituted diacetylene	4	Fluorescence	10
Ammonium molybdate	0.009	Light scattering	11
Sodium tetraphenylboron-polyethylene glycol	0.013	Light scattering	12
DEA-Ag NPs	0.004	Light scattering	this work

Table S3 LOD comparison of this work with some established methods for Pb²⁺

References

- 1. H. M. Wu, J. G. Liang and H. Y. Han, *Microchim. Acta*, 2008, 161, 81-86.
- 2. F. Chai, C. Wang, T. Wang, L. Li and Z. Su, ACS Applied Materials & Interfaces, 2010, 2, 1466-1470.
- 3. J. Liu and Y. Lu, J. Am. Chem. Soc., 2003, 125, 6642-6643.
- 4. Z. X. Wang and X. K. Li, Chem Res Chinese U, 2010, 26, 194-197.
- 5. N. Ding, Q. Cao, H. Zhao, Y. Yang, L. Zeng, Y. He, K. Xiang and G. Wang, *Sensors-Basel*, 2010, 10, 11144-11155.
- 6. Z. Yuan, M. Peng, Y. He and E. S. Yeung, Chem. Commun., 2011, 47, 11981-11983.
- 7. H. Li, Q. Zheng and C. Han, Analyst, 2010, 135, 1360-1364.
- 8. K. G. Thomas, K. Yoosaf, B. I. Ipe and C. H. Suresh, J. Phys. Chem. C, 2007, 111, 12839-12847.
- 9. J. Chen, J. Liu, Z. Fang and L. Zeng, Chem. Commun., 2012, 48, 1057-1059.
- 10. K. M. Lee, X. Chen, W. Fang, J.-M. Kim and J. Yoon, *Macromol. Rapid Commun.*, 2011, **32**, 497-500.
- 11. Y. Cui, F. Cui, L. Wang, Q. Zhang, W. Xue, F. Jing and J. Sun, J. Lumin., 2008, 128, 1719-1724.
- 12. K. J. Tan, C. Z. Huang and Y. M. Huang, *Talanta*, 2006, 70, 116-121.

Figure S1. UV absorption spectra of CS_2 , diethanolamine, and mixture of CS_2 and diethanolamine (after 1 min mixing under sonication).

Figure S2. FTIR spectra of (a) DTC; (b) DTC-Ag NPs.

(A) (B) (C)
 Figure S3. (A) SEM image of DTC-Ag NPs (scale bar corresponds to 100 nm). TEM images of DTC-Ag NPs without (B) and with (C) Pb²⁺ (scale bar corresponds to 50 nm).

Figure S4. UV-Vis absorption spectra of the DEA-Ag NPs (8.64 mg L⁻¹ as Ag) solution at different concentration of Pb²⁺: (a) 0 μ M; (b) 1 μ M; (c) 5 μ M; (d) 20 μ M. Inset: The color change with different concentration of Pb²⁺.

Supplementary Material (ESI) for Analyst This journal is (c) The Royal Society of Chemistry 2013

Figure S5. UV-Vis absorption spectra of the DEA-Ag NPs- Pb^{2+} system at different concentration of cysteine. Reaction conditions: 8.64 mg L⁻¹ DEA-Ag NPs (as Ag), 10 μ M Pb²⁺, and 10 μ M cysteine.

Figure S6. The RLS spectra of DTC-Ag NPs (648 μ g L⁻¹ as Ag)-Pb²⁺ system with various concentrations of cysteine (0.01, 0.5, 1, 10, and 20 μ M, respectively).

Figure S7. The absorbance spectra of DTC-Ag NPs (8.64 mg L⁻¹ as Ag) with addition of various concentrations of Pb²⁺ (0.5, 1, 3, 5, 7, 10 μ M, respectively). The inset is linear calibrated curve for Pb²⁺.

Figure S8. (A) UV-Vis absorption spectra of the DTC-Ag NPs (8.64 mg L⁻¹ as Ag) solution and the citrate-AgNPs (8.64 mg L⁻¹ as Ag). (B) The RLS spectra of DTC-Ag NPs (648 μg L⁻¹ as Ag) solution and the citrate-AgNPs (648 μg L⁻¹ as Ag).

Figure S9. The absorbance spectra of citrate-Ag NPs (8.64 mg L⁻¹ as Ag) with addition of various concentrations of Pb²⁺ (0, 1, 3, 5, 7, 10 μ M, respectively).

Figure S10. (A) The net RLS intensity of DTC-Ag NPs (black square) with addition of various concentrations of Pb²⁺ (1, 6, 10, 14, and 20 μ M) and citrate-Ag NPs (red dot) with addition of various concentrations of Pb²⁺ (1, 6, 10, 14, and 20 μ M). (B)

Selectivity of the citrate-Ag NPs-based RLS probe for Pb^{2+} over other ions. Concentrations of citrate-Ag NPs and Pb^{2+} were 0.65 mg L⁻¹ and 60 μ M respectively; concentrations of all other metal ions were 60 μ M. Error bars represent one standard deviation for three measurements.

Figure S11. Effect of pH on RLS intensity of DTC-Ag NPs with and without Pb^{2+} . Reaction conditions: DTC-Ag NPs concentration: 1.73 mg L⁻¹ (as Ag); Pb^{2+} concentration: 20 μ M. Error bars represent one standard deviation for three measurements.

Figure S12. Effect of salinity on RLS intensity of DTC-Ag NPs with and without Pb^{2+} . Reaction conditions: DTC-Ag NPs concentration: 1.73 mg L⁻¹ (as Ag); Pb^{2+} concentration: 20 μ M. Error bars represent one standard deviation for three measurements.

Figure S13. Effect of DTC-Ag NPs concentration. Pb^{2+} concentration: 6 μ M. Error bars represent one standard deviation for three measurements.

Figure S14. The response curves of cysteine.