Supporting Information

A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd²⁺ in aqueous media

Shyamaprosad Goswami,^{*a} Krishnendu Aich^a, Sangita Das^a, Avijit Kumar Das^a, Abhishek Manna^a and Sandipan Halder^b

^aDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah, INDIA, 711 103, Tel. +91-33-2668 4561-3 ext. 498; Fax. +91-33-2668 2916.

e-mail spgoswamical@yahoo.com

^bDepartment of Chemistry, Indian Institute of Technology, Kanpur, India

CONTENTS

<i>1</i> .	General method of UV-vis and fluorescence titration	2-3
2.	Determination of detection limit	4
3.	ESI MS spectrum of compound B	5
<i>4</i> .	¹ H NMR spectrum of compound B	6
5.	¹ H NMR spectrum of the receptor	7
6.	Mass spectrum (ESI-MS) of the receptor	8
7.	¹³ C NMR spectrum of the receptor	9-10
8.	IR spectra of the receptor and its Cd ²⁺ complexes	11
<i>9</i> .	ESI-MS spectrum of Cd ²⁺ complex of the receptor	12
10.). UV-vis titration spectra of the receptor with different guest cations	. 13-14
<i>10</i> .	. Fluorescence titration spectra of the receptor with different guest cations	15-16

General method of UV-vis and fluorescence titration:

By UV-vis method

UV-vis spectra were recorded on a JASCO V-530 spectrophotometer using a dissolution cell of 10 mm path and the fluorescence spectra were recorded on a PTI spectrophotometer using a fluorescence cell (10 mm). For UV-vis titrations, stock solution of receptor was prepared ($c = 6 x 10^{-6} ML^{-1}$) in CH₃OH-H₂O (1:4 v/v) in the presence of HEPES buffer solution (pH 7.1). For fluorescence titrations, stock solution of receptor was prepared ($c = 3 x 10^{-6} ML^{-1}$) in CH₃OH-H₂O (1:4 v/v) in the presence of HEPES buffer solution of the guest cations using their perchlorate salts in the order of 2 x 10⁻⁵ M were prepared in deionised water. Solutions of various concentrations containing host and increasing concentrations of cations were prepared separately. The spectra of these solutions were recorded by means of UV-vis methods. Binding constant was calculated according to the Benesi-Hildebrand equation. *Ka* was calculated following the equation stated below.

 $1/(A-Ao) = 1/{K(A_{max}-Ao) [M^{x+}]^{n}} + 1/[A_{max}-A_{o}]$

Here Ao is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest, A_{max} is absorbance in presence of added $[M^{n+}]_{max}$ and K is the association constant. The association constant (K) could be determined from the slope of the straight line of the plot of 1/(A-Ao) against 1/[M^{x+}] and is found to be 1.656 x 10⁻⁵ M.

Figure S1: Benesi-Hildebrand plot from absorption titration data of receptor (6 μ M) with Cd²⁺.

General procedure for drawing Job plot by UV-vis method

Stock solution of same concentration of the receptors and the guest were prepared in the order of ca. 1.0 x 10^{-5} ML⁻¹ CH₃OH-H₂O (1:4, v/v). The absorbance in each case with different *host–guest* ratio but equal in volume was recorded. Job plots were drawn by plotting $\Delta I.X_{host}$ vs X_{host} (ΔI = change of intensity of the absorbance spectrum during titration and X_{host} is the mole fraction of the host in each case, respectively).

By fluorescence method:

The binding constant value of Cd^{2+} with receptor has been determined from the emission intensity data following the modified Benesi–Hildebrand equation,² $1//\Delta I = 1//\Delta I$ max + $(1/K[C])(1//\Delta I max)$. Here $\Delta I = I$ -Imin and $\Delta I max = Imax$ -Imin, where Imin, I, and Imax are the emission intensities of receptor considered in the absence of Cd^{2+} , at an intermediate Cd^{2+} concentration, and at a concentration of complete saturation where K is the binding constant and [C] is the Cd^{2+} concentration respectively. From the plot of $[1 / (I_{min} -I)]$ against $[C]^{-1}$ for receptor, the value of K has been determined from the slope. The association constant (K_a) as determined by fluorescence titration method for the receptor with Cd^{2+} is found to be 6.808 x $10^5 M^{-1}$ (error < 10%).

Figure S2: Benesi–Hildebrand plot from fluorescence titration data of receptor (3 μ M) with Cd²⁺.

Determination of detection limit:

The detection limit (DL) of \mathbf{RQ} for Cd^{2+} was determined from the following equation:

DL = K* Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

For UV-vis:

From the graph, we get slope = 43180.32, and Sb₁ value is 0.010213

Thus using the formula we get the Detection Limit = 7.09×10^{-7} M i.e. RQ can detect Cd²⁺ in this minimum concentration through UV-vis method.

For Fluorescence:

From the graph we get slope = 1.44×10^{12} , and Sb₁ value is 94366.66

Thus using the formula we get the Detection Limit = 1.97×10^{-7} M i.e. RQ can detect Cd²⁺ in this minimum concentration through fluorescence method.

ESI MS spectra of compound B:

Figure S3: ESI TOF mass spectra of the compound B.

¹ H NMR spectra of the compound B:

Figure S4: 1H NMR (300 MHz) spectra of compound B in CDCl₃.

¹ H NMR spectra of the receptor:

Figure S5: 1H NMR (300 MHz) spectra of the receptor in CDCl₃.

ESI MS spectra of the receptor:

Figure S6: ESI TOF mass spectra of the receptor.

¹³C NMR spectra of the receptor:

Figure S7: ¹³C NMR (100 MHz) spectra of the receptor in CDCl₃.

Figure S8: Expansion mode of the ¹³C NMR spectra of the receptor in CDCl₃.

IR spectra of the receptor and its Cd²⁺ complex:

Figure S9: FT IR spectra of the receptor and its complex with Cd²⁺.

ESI-MS of Cd²⁺ complex of the receptor:

Figure S10: ESI TOF mass spectra of the Cd²⁺ complex of the receptor.

Fluorescence emission spectra of the receptor with different guest cations in CH₃OH-HEPES buffer solution (1:4, ν/ν , pH = 7.1):

