Electronic Supplementary Information

The chitosan-capped silver nanoparticles as highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols

Zhaohui Chen,^{a,b} Xiaodan Zhang,^a Haiyan Cao, ^a and Yuming Huang^{*a}

 ^a State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China E-mail: ymhuang@swu.edu.cn

^b Basic Department of Rongchang Campus, Southwest University, Chongqing 402460, China.

Fig. S1. FT-IR spectra of the chitosan, Ch-Ag NPs, Ch-Ag NPs-tannic acid, Ch-Ag NPs-gallic

acid, and Ch-Ag NPs-pyrogallol.

Fig. S2. TEM (left) and SEM (right) images of the Ch-Ag NPs.

Fig. S3. XRD patterns of the Ch-Ag NPs.

Fig. S4. TGA curves of chitosan and Ch-Ag NPs.

Fig. S5. The UV-visible absorption spectra of Ch-Ag NPs colloidal solution in the presence of different concentrations of targets phenols. Inset: photographic images.

Fig. S6. Hydrodynamic diameter distributions of the Ch-Ag NPs in the absence and presence of different concentrations of targets.

Fig. S7. The UV-visible absorption spectra of Ch-Ag NPs colloidal solution with AgNO₃ in the presence of gallic acid (A), tannic acid (B), and pyrogallol (C). Insets highlight the UV-visible absorption spectra of Ch-Ag NPs colloidal solution in the presence of target without AgNO₃. Reaction conditions: 2 mL 1×10^{-4} M Ch-Ag NPs +0.25 mL 4×10^{-4} M AgNO₃ or water + 0.25 mL 2×10^{-4} M target compound.

Fig. S8. (A) The UV-visible absorption spectra of Ch-Ag NPs and three targets with and without AgNO₃. Reaction conditions: 2 mL 1×10⁻⁴ M Ch-Ag NPs or 0.25 mL 2×10⁻⁴ M target compound +0.25 mL 4×10⁻⁴ M AgNO₃ or water. The final volume was 2.5 mL.
(B) The UV-visible absorption spectra of Ch-Ag⁺ with and without three targets. Reaction

conditions: 2 mL 1×10^{-4} M Ch-Ag⁺+0.50 mL 1×10^{-4} M target compound or water. The final volume was 2.5 mL.

Fig. S9. Variations of absorbance of Ch-Ag NPs at 411 nm with pH (a) and time (b).

Fig. S10. (A) Effect of reaction time. Reaction conditions: 2 mL 1×10^{-4} M Ch-Ag NPs with 0.5 mL 1×10^{-4} M target compound. The absorbance ratios for gallic acid, pyrogallol and tannic acid are A_{262}/A_{437} , A_{266}/A_{430} , and A_{275}/A_{434} , respectively. (B) Effect of Ch-Ag NPs concentration.

gallic acid

pyrogallol

tannic acid

p-aminobenzoic pentachlorophenol 2,4,6-trinitrophenol

2,4-dinitrophenol

p-nitrophenol

acid

phloroglucin

hydroquinone *m*-dihydroxy-benzene

Fig. S11. The chemical structure of tannic acid, gallic acid, pyrogallol, p-amino benzoic acid, pentachlorophenol, 2,4,6-trinitrophenol, 2,4-dinitrophenol, p-nitrophenol, 1-naphthol, β -naphthol, *p*-aminophenol, catechol, hydroquinone, *m*-dihydroxy-benzene, phloroglucin and phenol.

	Tap water samples			River water samples		
Targets	Added	Found ^a	Recovery	Added	Found	Recovery
	(µM)	(µM)	(%)	(µM)	(µM)	(%)
Gallic acid	0	n.d	-	0	n.d ^b	-
	10	9.9±0.3	99.0	10	9.5±0.1	95.4
	30	29.3±0.1	97.7	30	29.1±0.1	97.0
	50	49.2±0.1	98.4	50	48.4±0.1	96.9
Pyrogallol	0	n.d	-	0	n.d	-
	10	9.94±0.01	99.4	10	9.85±0.01	98.5
	30	30.2±0.02	100.5	30	29.4±0.2	98.1
	50	50.0±0.01	100.0	50	46.8±0.1	93.6
Tannic acid	0	n.d	-	0	n.d	-
	1	1.04±0.02	103.8	1	0.99±0.01	99.1
	3	2.91±0.01	97.0	3	2.98±0.01	99.3
	5	5.28±0.01	105.6	5	5.00±0.01	100.0

Table S1. The results of the target determination in tap water and river water samples

^a Average \pm standard deviation (n = 3). ^bnot detected.