Supporting Information

A Novel Dual-switch Fluorescent Probe for Cr(III) Ion Based on PET-FRET Processes

Fangzhi Hu,^a Baozhan Zheng,^a Dongmei Wang,^a Maoping Liu,^a Juan Du^{*},^a and Dan Xiao^{*},^{a,b}

^a College of Chemistry, Sichuan University, Chengdu 610064, PR China

^b College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China

E-mail: xiaodan@scu.edu.cn;

E-mail: lxdj@vip.sina.com;

Fax: +86 28-85416029; Tel: +86-28-85415029

Figure S-1. ¹H NMR spectrum of NNRhB.

Figure S-2. ¹³C NMR spectrum of NNRhB.

Figure S-3. ESI-MS spectrum of NNRhB.

Figure S-4. ¹H NMR spectrum of compound 1.

Figure S-5. ESI-MS spectrum of compound 1.

Figure S-6. ¹H NMR spectrum of compound 2.

Figure S-7. ESI-MS spectrum of compound 2.

Figure S-8. FT-IR spectra of NNRhB.

Figure S-9. Photographs of color changes (a) and fluorescence responses (b) of NNRhB coordinated with different concentration of Cr^{3+} ions (from left to right: 0, 5, 10, 20, 30, 40, 50, 60, 70 and 80 μ M).

Figure S-10. Job's plot showing the 1:2 binding of NNRhB with Cr³⁺ ion.

Figure S-11. (a) Fluorescence spectra of compound **1** (13 μ M) upon addition of increasing Cr³⁺ concentrations in CH₃CN/HEPES buffer solution (0-60 μ M). (2:1, v/v, 0.5 mM, pH = 7.4) (λ_{ex} = 386 nm). (Inset: Excitation spectra and emission spectra of compound 1.) (b) Fluorescence spectra of compound **2** (13 μ M) upon addition of increasing Cr³⁺ concentrations in CH₃CN/HEPES buffer solution (0-60 μ M). (2:1, v/v, 0.5 mM, pH = 7.4; λ_{ex} = 530 nm).

Figure S-12. The spectral overlap between the absorption of Cr^{3+} -compound 2 and the fluorescence emission of Cr^{3+} -compound 1.

Reagent	Selectivity	Detection range (µM)	Detection limit (nM)	Ref.
Rhodamine B derivative	Cr ³⁺	-	1000	1
Rhodamine B derivative	Hg ²⁺ ; Cr ³⁺	-	0.14	2
Quercetin	Cr	0.1-2	9.1	3
Rhodamine derivative	Cr ³⁺	0.1-8	3.75	4
Rhodamine 6G derivative	Fe ³⁺ ; Cr ³⁺	-	-	5
Acridone derivative	Cr ³⁺	1-18	200	6
Rhodamine B derivative	Cr ³⁺	0.03-80	0.14	Our work

Table S-1. Comparison of our probe with other fluorescent organic molecules for thedectection of Cr^{3+} .

Sample	Added (µM)	found (µM)	Recovery(%)	RSD(%)
	0	0		
	10	10.36	103.6	
Pond water	10	10.31	103.1	0.436
	10	10.43	104.3	
	0	0		
	10	9.63	96.3	
Tap water	10	9.59	95.9	0.267
	10	9.65	96.5	

Table S-2. Recovery study of spiked Cr^{3+} in pond water and tap water with proposed sensing system.

Sample	Added (µM)	Found (µM)	Recovery(%)	RSD(%)
	0	0		
	10	10.08	100.8	
Cell lysate	10	10.05	100.5	0.168
	10	10.05	100.5	
	0	0		
	10	10.05	100.5	
blood serum	10	10.13	101.3	0.424
	10	10.06	100.6	

Table S-3. Recovery study of spiked Cr^{3+} in cell lysate and blood serum with proposed sensing system.

REFERENCES

- Y. Wan, Q. Guo, X. Wang and A. Xia, *Analy. Chim. Acta*, 2010, 665, 215-220.
- P. Mahato, S. Saha, E. Suresh, R. Di Liddo, P. P. Parnigotto, M. T. Conconi, M. K. Kesharwani, B. Ganguly and A. Das, *Inorg. Chem.*, 2012, 51, 1769-1777.
- 3. M. S. Hosseini and F. Belador, J. Hazard. Mater., 2009, 165, 1062-1067.
- 4. P. Xie, F. Guo, Y. Xiao, Q. Jin, D. Yao and Z. Huang, J. Lumin., 2013.
- J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan and W. Liu, Org. Lett., 2007, 9, 4567-4570.
- D. Karak, A. Banerjee, A. Sahana, S. Guha, S. Lohar, S. S. Adhikari and D. Das, *J. Hazard. Mater.*, 2011, 188, 274-280.