Supporting information

Fig. S1 Absorption spectra of 10 μ M **1** upon addition of increasing concentration of ClO⁻ in 0.1 M PBS (pH 7.4), **1** alone (blue), addition of 10 μ M ClO⁻ (green), 50 μ M ClO⁻ (pink), 100 μ M ClO⁻ (brown), respectively.

Fig. S2 The relationship between the maximum luminescence intensity of 10 μ M 1 and the concentration of ClO⁻ (0 to 100 μ M). The titration was performed in 0.1 M pH 7.4 PBS, with excitation at 450 nm ranging from 470 nm to 700 nm.

Fig. S3 Mass spectra of the oxidized product after the reaction between 1 and ClO-

Fig. S4 The emission spectra of $\text{Ru}(\text{bpy})_3^{2+}$ (10 µM) upon addition of increasing concentration of CIO⁻ (0 to 100 µM) in 0.1 M (pH 7.4) PBS, excited at 450 nm ranging from 470 nm to 700 nm. $\text{Ru}(\text{bpy})_3^{2+}$ (black), addition of 10 µM CIO⁻ (green), 50 µM CIO⁻ (pink), 100 µM CIO⁻ (brown), respectively.

Fig. S5 The emission spectra of PTZ (10 μ M) upon addition of increasing concentration of ClO⁻ in a mixture of 0.1 M (pH 7.4) PBS and acetonitrile (V/V = 8:2), excited at 350 nm ranging from 370 nm to 560 nm. PTZ (pink), addition of 10 μ M ClO⁻ (green), 50 μ M ClO⁻ (blue), 100 μ M ClO⁻ (red), respectively.

Fig. S6 Luminescence intensity of 1 (10 μ M) with absence and presence of 100 μ M ClO⁻ under various pH in 0.1 M PBS (λ_{ex} : 450 nm, λ_{em} : 605 nm). pH values: 5, 5.5, 6, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0.

Fig.S7 Time dependent luminescence intensity changes of 1 (10 μ M) with 100 μ M different substance in 0.1 M pH 7.4 PBS (λ_{ex} =450 nm, λ_{em} =605 nm).

Fig. S8 The relationship between the maximum luminescence intensity of 10 μ M the oxidation form of 1 and the concentration of H₂S (0 to 100 μ M). The titration was performed in 0.1 M pH 7.4 PBS, with excitation at 450 nm ranging from 470 nm to 700 nm.

Fig. S9 The linear relationship between the maximum luminescence intensity of 10 μ M the oxidation form of 1 and the logarithmic concentration of H₂S (From -9 to -4), The titration was performed in 0.1 M pH 7.4 PBS, with excitation at 450 nm ranging from 470 nm to 700 nm.

Fig. S10 Time dependent luminescence intensity changes of 10 µM the oxidation form of 1 with 100 μM reductants in 0.1 M PBS at pH =7.4 (λ_{ex} = 450 nm, λ_{em} = 605 nm).

1.45E-7

1.18E-7

Max: 1.20E-7

1.19E-7

Fig. S11 The luminescence imaging of the redox cycle between ClO⁻ and H₂S in live mice. a) 1 (10 µM, 100 µL) in 0.1 M PBS (pH 7.4) was loaded in the leg cortex of the mice. b) 600 µM PABA (0.1 µL) was loaded in the same position. c) 100 µM ClO⁻ (0.1 µL) was loaded in the same position. d) another 100 μ M ClO⁻ (0.1 μ L) was loaded in the same position. e) 100 μ M H₂S (0.1 μL) was loaded in the same position.

No.	Added	Detected	Average	Recovery	RSD^b
	(mol/L)	(mol/L)	(mol/L)	(%)	(%)
		0.97×10 ⁻⁸			
1	1.0×10 ⁻⁸	1.12×10 ⁻⁸	1.02×10 ⁻⁸	102	1.35
		0.98×10 ⁻⁸			
2	1.0×10 ⁻⁷	1.03×10^{-7}	1.05×10 ⁻⁷	105	5.80
		1.12×10^{-7}			
		1.01×10^{-7}			
3	1.0×10 ⁻⁶	1.05×10^{-6}	1.04×10 ⁻⁶	104	3.08
		1.01×10^{-6}			
		1.07×10^{-6}			
		1.07×10^{-4}			
4	1.0×10^{-4}	0.99×10 ⁻⁴	1.05×10^{-4}	105	5.70
		1.10×10^{-4}			

Table S1 The recovery of H₂S added into a tap water sample detected by the oxidation form of **1** (10 μ M **1** + 100 μ M ClO⁻) in PBS (0.1 M, pH = 7.4).^{*a*}

^{*a*} Average of three determinations and the averaged readings were used.^{*b*} RSD stands for relative standard deviation.