Electronic Supplementary Information

Sensitive and Selective Trypsin Detection Using Redox Cycling in the Presence of L-Ascorbic Acid

Seonhwa Park and Haesik Yang*

Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Korea **Reason for Wider Dynamic Range in Trypsin Detection Using EC Redox Cycling**. When high concentrations of trypsin were used, the chronocoulometric charges were saturated. To investigate the saturation behavior, the charges obtained in a solution containing trypsin and Gly-Pro-Arg-AN were compared to those obtained in a solution containing AN (Fig. S7 and S8). The charges obtained using EC redox cycling after an incubation period of 2 h in a solution containing 1000 ng/mL trypsin and 0.1 mM Gly-Pro-Arg-AN (bars iii in Fig. S7) and after an incubation period of 30 min in a solution containing 2000 ng/mL trypsin and 0.1 mM Gly-Pro-Arg-AN (bar iv in Fig. S7) were much smaller than that obtained in a solution containing 0.1 mM AN (bar ii in Fig. S8). The result indicates that the peptide bond of 0.1 mM Gly-Pro-Arg-AN was not fully cleaved after 2 h (or 30 min).

However, the charges obtained using ECC redox cycling after an incubation period of 2 h in a solution containing 1000 ng/mL trypsin and 0.1 mM Gly-Pro-Arg-AN (bar iii in Fig. S8) and after an incubation period of 30 min in a solution containing 2000 ng/mL trypsin and 0.1 mM Gly-Pro-Arg-AN (bars iv in Fig. S8) were similar to that obtained in a solution containing 0.1 mM AN (bar ii in Fig. S8). It indicates that the saturation behavior occurred although the peptide bond of 0.1 mM Gly-Pro-Arg-AN was not fully cleaved after 2 h (or 30 min). Therefore, when EC redox cycling was employed, higher trypsin concentrations were detected because the saturation behavior was observed at much higher concentrations. As a result, the dynamic range of EC redox cycling was wider than that of ECC redox cycling.

References

- S1 M. Choi, K. Jo, H. Yang, Bull. Korean Chem. Soc., 2013, 34, 421-425.
- S2 J. Adjemian, A. Anne, G. Cauet, C. Demaille, *Langmuir*, 2010, 26, 10347–10356.
- S3 L. Hu, S. Han, S. Parveen, Y. Yuan, L. Zhang, G. Xu, Biosen. Bioelectron., 2012, 32, 297–299.
- S4 M. Stoytcheva, R. Zlatev, S. Cosnier, M. Arredondo, *Electrochim. Acta*, 2012, **76**, 43–47.
- S5 X. Gao, G. Tang, Y. Li, X. Su, Anal. Chim. Acta, 2012, 743, 131-136.
- S6 R. E. Ionescu, S. Cosnier, R. S. Marks, Anal. Chem., 2006, 78, 6327-6331.

Ref.	Method	System	Preparation time (min, except for electrode pretreatment)	Incubation period (min)	Detection limit (ng/mL)	Dynamic range (ng/mL)
S2	Cyclic voltammetry	Ferrocene-label ed oligopeptide and flexible polyethylene glycol (PEG) monolayer at Au electrodes	>120	11	25	25-100000
S3	Fluorescence	BSA-stabilized Au nanoparticles	720, preparation of BSA-stabilized Au nanoparticles	120	2.0	10-100000
S4	Square wave voltammetry	1,2-Benzoquino ne electrochemical reduction at gelatin- coated screen printed electrodes	30, modification of carbon electrode with gelatin	140	10	100–1000000 (10 min reaction)
S5	Fluorescence quenching	Mn:ZnSe d-dots/Arg ₆	80	30	100	100-12000
S6	Amperometry	H ₂ O ₂ electro-oxidatio n at gelatin- and pyrrole-alkylam monium coated Pt electrodes	215	10	1	1–300
The present study	Chronocoulometry	ECC redox cycling at bare ITO electrodes	0	120	1	1–1000
				30	100	100-2000

Table S1. Comparison of techniques used for trypsin detection

containing 5.0 mM CaCl₂, 1.0 mM Ru(NH₃) $_{6}^{3+}$, 2.0 mM TCEP, and 0.1 mM a) P or b) Gly-Pro-Arg-P. P is (i) 4-aminophenol, (ii) 4-amino-2-chlorophenol (iii) 4-amino-2,6-dichlorophenol, or (iv) 4-amino-1-naphthol (AN).

Fig. S2 (a) Chronocoulograms for trypsin detection obtained using ECC redox cycling with an incubation period of 30 min in tris buffer (pH 8.0) at 37 °C. The chronocoulograms were obtained at 0.05 V in tris buffer containing 5.0 mM CaCl₂, 1.0 mM Ru(NH₃)₆³⁺, 2.0 mM TCEP, and 0.1 mM Gly-Pro-Arg-AN. Chronocoulograms for trypsin detection obtained using EC redox cycling with an incubation period of (b) 2 h or (c) 30 min in tris buffer at 37 °C. The chronocoulograms were obtained at 0.10 V in tris buffer containing 5.0 mM CaCl₂, 2.0 mM TCEP, and 0.1 mM Gly-Pro-Arg-AN.

Fig. S3 Calibration plot for the chronocoulograms in Fig. S2b obtained using EC redox cycling with an incubation period of 2 h in tris buffer (pH 8.0) at 37 °C.

Fig. S4 Chronocoulograms obtained at 0.05 V in PBS buffer containing 2.0 mM TCEP, 1.0 mM Ru(NH₃)₆³⁺, and (i) 0.1 mM AA or (ii) 0.1 mM Gly-Pro-Arg-AN after incubating for 30 min at 37 °C.

Fig. S5 Cyclic voltammogram of 0.1 mM UA obtained (at a scan rate of 100 mV/s) in PBS buffer (pH 7.4) at a bare ITO electrode.

Fig. S6 Chronocoulograms for trypsin detection obtained using ECC redox cycling with an incubation period of 30 min at 37 °C in PBS buffer (pH 7.4). The chronocoulograms were obtained at 0.05 V in PBS buffer containing 5% human serum albumin, 0.1 mM AA, 0.1 mM UA, 1.0 mM Ru(NH₃)₆³⁺, 2.0 mM TCEP, and 0.1 mM Gly-Pro-Arg-AN.

Fig. S7 Charge values at 100 s in chronocoulograms obtained using EC redox cycling in tris buffer (pH 8.0) containing 5 mM CaCl₂, 2.0 mM TCEP, and (i) 0.1 mM Gly-Pro-Arg-AN, (ii) 0.1 mM AN, (iii) 0.1 mM Gly-Pro-Arg-AN + 1000 ng/mL trypsin after incubating for 2 h at 37 °C, or (iv) 0.1 mM Gly-Pro-Arg-AN + 2000 ng/mL trypsin reaction for 30 min at 37 °C. All our experiments were carried out with 3 different electrodes for the same sample. The error bars represent the standard deviation of three measurements.

Fig. S8 Charge values at 100 s in chronocoulograms obtained using ECC redox cycling in tris buffer (pH 8.0) containing 5 mM CaCl₂, 1.0 mM Ru(NH₃)₆³⁺, 2.0 mM TCEP, and (i) 0.1 mM Gly-Pro-Arg-AN, (ii) 0.1 mM AN, (iii) 0.1 mM Gly-Pro-Arg-AN + 1000 ng/mL trypsin after incubating for 2 h at 37 °C, or (iv) 0.1 mM Gly-Pro-Arg-AN + 2000 ng/mL trypsin reaction for 30 min at 37 °C. All our experiments were carried out with 3 different electrodes for the same sample. The error bars represent the standard deviation of three measurements.