

1

## Supporting Information

### 2 Facile Method to Stain the Bacterial Cell Surface for Super-Resolution Microscopy

3 *Ian L. Gunsolus<sup>†</sup>, Dehong Hu<sup>‡</sup>, Cosmin Mihai<sup>‡</sup>, Samuel E. Lohse<sup>†</sup>, Chang-soo Lee<sup>||</sup>, Marco*

4 *Torelli<sup>||</sup>, Robert J. Hamers<sup>||</sup>, Catherine J. Murphy<sup>†</sup>, Galya Orr<sup>‡</sup>, and Christy L. Haynes<sup>†\*</sup>*

5 <sup>†</sup>Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN,

6 55455, United States

7 <sup>‡</sup>Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,

8 Richland, WA 99354, United States

9 <sup>†</sup>Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews

10 Avenue, Urbana, Illinois 61801, United States

11 <sup>||</sup>Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States

12

13 Tel: 612-626-1096; Fax: 612-626-7541; Email: chaynes@umn.edu

14

15

16 Abstract: Supporting information contains additional images of fluorescent bacterial cells and  
17 cells in combination with fluorescent nanomaterials. Fluorescent nanomaterial characterization is  
18 also included.

19

## 20 Fluorescent Nanomaterial Preparation and Additional Fluorescence Images

21 To provide broader context for this work, we include here additional image analysis and  
22 images of bacterial cells stained with amine-reactive Alexa Fluor 488 either alone or in  
23 combination with quantum dots. Quantum dot material characterization data is also provided.

24 *Estimating the localization precision achieved by STORM.* The equation below, taken from  
25 Thompson et al. 2002, was used to estimate the localization precision achieved by STORM.<sup>1</sup>

$$26 \quad \langle (\Delta x)^2 \rangle = \frac{s^2 + a^2/12}{N} + \frac{8\pi s^4 b^2}{a^2 N^2}$$

27 By estimating N=500 photons, b=10 photons, a=100 nm, and s=FWHM/2.35=270/2.35=115 nm,  
28 the value of  $\Delta x$  was found to be 14.3 nm. According to this method, the FWHM resolution of  
29 STORM imaging performed herein is  $14.3 \times 2.35 = 34$  nm.

30 A more conservative estimate was also calculated using the equation below, taken from  
31 Mortensen et al. 2010.<sup>2</sup>

$$32 \quad \text{Variance} = \frac{\sigma_a^2}{N} \left( \frac{16}{9} + \frac{8\pi\sigma_a^2 b^2}{Na^2} \right)$$

33 where  $\sigma_a^2 = \sigma^2 + a^2/12$


34 Estimating N=500 photons, b=10 photons, a=100 nm, and  $\sigma$ =FWHM/2.35=270/2.35=115 nm,  
35 the resulting  $\Delta x$  value was found to be 15.8 nm. Accordingly, the FWHM resolution of STORM  
36 is  $14.3 \times 2.35 = 37$  nm.

37

38

39 *Images of Cells and Nanomaterial-Cell Interactions*

40 Figure 1 demonstrates the resolving power of STORM by comparing wide-field (top) and  
41 STORM (bottom) images of *Shewanella oneidensis* MR-1 stained and imaged as described in the  
42 methods section.

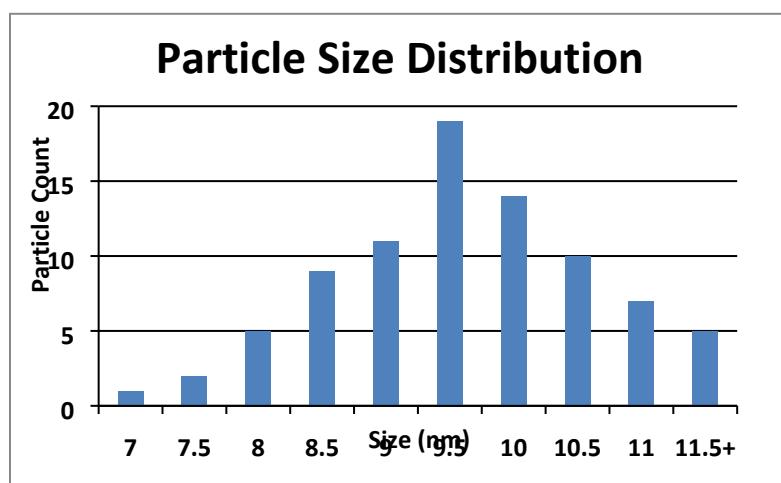
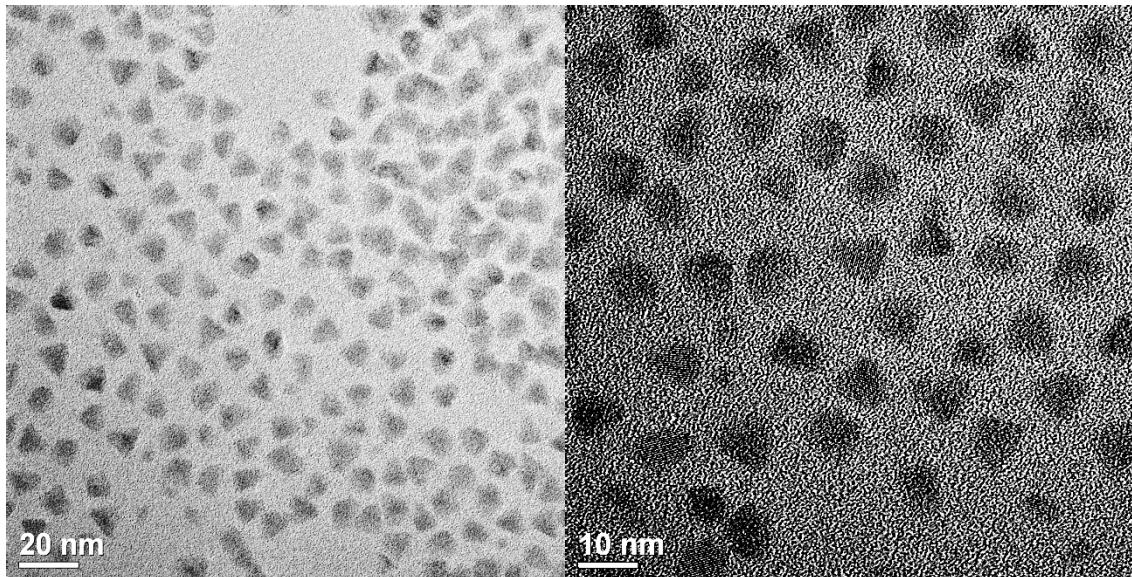



43  
44 Figure 1: Wide-field (top) and STORM (bottom) images of *Shewanella oneidensis* MR-1 stained  
45 with amine-reactive AF-488.

46

47 Figure 2 presents an additional SIM image of *Shewanella oneidensis* MR-1 exposed to 250 nM  
48 amino-poly(ethylene glycol)-functionalized CdSe/ZnS core-shell quantum dots. Quantum dots,  
49 shown in orange, are observed to associate with the cell wall, again showing no penetration into  
50 the intracellular space.

51



52



53 Figure 2: SIM image of *Shewanella oneidensis* MR-1 stained with amine-reactive AF-488  
54 (green), exposed to 250 nM amino-poly(ethylene glycol)-functionalized CdSe/ZnS core-shell  
55 quantum dots (orange).

## 56 Commercial CdSe/ZnS Quantum Dot Size Characterization

57 Amino-poly(ethylene glycol) functionalized CdSe(core)/ZnS (shell) nanoparticles were analyzed  
58 by transmission electron microscopy (TEM). Particles were diluted 10-fold in ethanol, dried onto  
59 a 300 mesh pure carbon grid (Ted Pella), and viewed with a Philips FEG CM200 Ultra Twin  
60 TEM at 200 kV accelerating voltage. Particle size in longest dimension is 9.3 nm ± 1 nm (n=83).



63 Fig. 4 Representative images at 250,000x and 460,000x magnification with size distribution  
64 (n=83).

65

66 **Reference**

67 (1) Thompson, R. E.; Larson, D. R.; Webb, W. W. *Biophys. J.* **2002**, *82*, 2775–2783.  
68 (2) Mortensen, K. I.; Churchman, L. S.; Spudich, J. A.; Flyvbjerg, H. *Nat. Methods* **2010**, *7*,  
69 377–381.  
70