Supporting information

A G-quadruplex DNAzyme based colorimetric method for facile detection of

Alicyclobacillus acidoterrestris

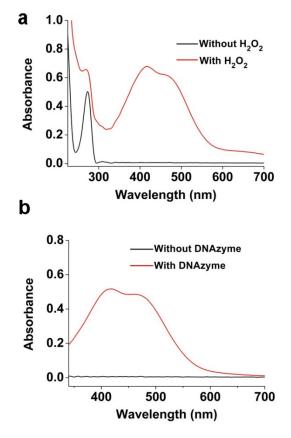


Fig. S1 (a) UV-vis absorption spectra of probe solution (25 mM KHP-NaOH, 0.5 μ M DNA, 1 μ M hemin, 0.05% Triton X-100 (v/v), 150 mM NaCl, 20 mM KCl, and 1 mM guaiacol, pH 5) in the absence of H₂O₂ and in the presence of 4 mM H₂O₂. (b) UV-vis absorption spectra of probe solution (25 mM KHP-NaOH, 0.05% Triton X-100 (v/v), 150 mM NaCl, and 1 mM guaiacol and 4 mM H₂O₂, pH 5) with DNAzyme and without DNAzyme.

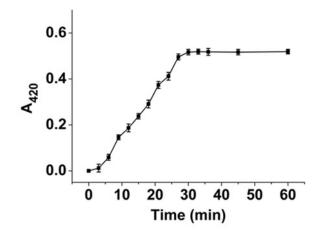


Fig. S2 Time-dependent absorbance changes at 420 nm to analyze the guaiacol catalytically polymerized reaction.

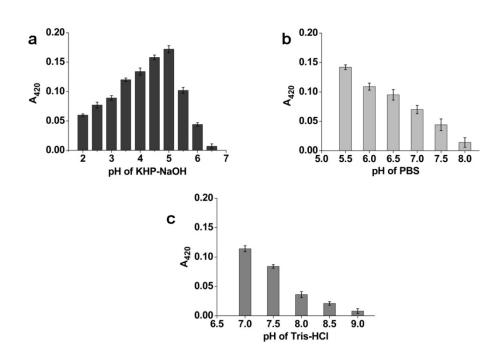


Fig. S3 Effect of pH value in different buffer solutions for guaiacol polymerization: (a) KHP-NaOH buffer solutions with pH from 2 to 6.5, (b) PBS buffer solutions with pH

Composition	Elements	Amounts (g L ⁻¹)
Basal medium	CaCl ₂ ·2H ₂ O	0.25
	MgSO ₄ ·7H ₂ O	0.50
	$(NH_4)_2SO_2$	0.20
	KH ₂ PO ₄	3.00
	yeast extract	2.00
	glucose	5.00
Trace element solution	$ZnSO_4 \cdot 7H_2O$	0.10
	$MnCl_2 \cdot 4H_2O$	0.03
	H ₃ BO ₃	0.30
	CoCl ₂ ·6H ₂ O	0.20
	$CuCl_2 \cdot 2H_2O$	0.01
	NiCl ₂ ·6H ₂ O	0.02
	Na ₂ MoO ₄ ·2H ₂ O	0.03
Agar power	Agar ^a	15-20

Table S1 The composition of 402 broth.

^aThe agar power is needed to prepare 402 solid medium.