Construction of Carbon Nanotube Based Nanoarchitectures for Selective Impedimetric Detection of Cancer Cells in Whole Blood

Yang Liu,^{a,b} Fanjiao Zhu,^{a,b} Wangxia Dan,^a Yu Fu,^a Shaoqin Liu*^a

^a Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of

Education, Harbin Institute of Technology, Harbin, 150080, China

^b School of Life Science and Technology, Harbin Institute of Technology, Harbin,

150080, China

* To whom correspondence should be addressed.

Email: shaoqinliu@hit.edu.cn, shaoqinliu@hotmail.com

Scheme S1. Preparation of ITO/MWCNT/PEI/anti-EpCAM and immunological recognition between anti-EpCAM and HepG₂.

Fig. S1 (A) Absorption spectra of MWCNTs. Inset: Image of MWCNTs dispersed in PSS. (B) UV-vis spectra of $(MWCNT/PEI)_n$ multilayers assembled onto ITO surface. The inset shows the linear relationship between the absorbance at 400 nm and the MWCNT/PEI bilayer numbers. (C) TEM image of $(MWCNT/PEI)_5$ multilayers assembled onto ITO electrode. (D) TEM image of bare ITO electrode. Scale bar is 2.5 μ m.

Figure S2 Nyquist plots of the prepared biosensors after incubation with PBS solution (a), the fetal bovine serum (b), healthy people serum (c) and whole blood from healthy people (d).

 Table S1 Comparison of the proposed biosensor and other CTC sensors.

Detection method	LOD	Detection time	Linear range	Comment	Reference
Cyclic Voltammetry	1×10 ⁵ cells mL ⁻¹	15 min.	1×10 ⁵ -1×10 ⁸ cells mL ⁻¹	A succinimidyl6-(3-[2-pyridyldithio]-propionamido) hexanoate (LC-SPDP) self- assembled monolayer prepared onto gold microelectrode(Au) surface has been utilized for covalent immobilization of anti-EpCAM antibody. Cancer cell identification via molecular profiling of cells on microelectrodes using ferrocene amidopentyl carboxylic acid based redox tagging and magnetic beads based	S1
Cyclic Voltammetry	4.41×10 ³ cells mL ⁻¹	30 min.	1×10^3 - 5 × 10^4 cells mL ⁻¹	enhancement was achieved by CV investigation in PBS. By combining the capturing capability of anti-EpCAM antibody functionalized Au nanoparticles with the electrocatalytic properties of Au nanoparticles towards the hydrogen evolution reaction, selective detection of Caco2 cells was achieved. A semi-integrated electrical biosensor for the detection of rare CTCs in blood is	S2
Electrochemical impedance spectroscopy	20 cells mL ⁻¹	_	_	A semi-integrated electrical biosensor for the detection of rate electron blood is described. The sample was first enriched through a combination of immunomagnetic isolation and size filtration. The sample was then transferred to a microchip for further magnetic concentration, followed by immunochemical trapping and electronic detection by impedance spectroscopy.	S3
Chemiluminescence	10 ⁴ cells mL ⁻¹	10 min.	2×10^4 - 5 × 10 ⁵ cells mL ⁻¹	An aptamer-based "sandwich" approach combined with the chemiluminescence (CL) analysis was developed for the capture and detection of rare cells on a microfluidic chip. The capture efficiency for Ramos cells was more than 70% with the purity greater than 97%, when the content of the target cells was between 0.5% and 10% in the initial cell mixture.	S4
Magnetoresistance	a single cell	_	_	3D rolled-up structures made of a SiO_2 layer and a fishbone-like magnetic thin film were designed to attract and trap a magnetic cell to the sensor area for magnetoresistance measurement.	S5
Resonance frequency	~1 cell/10 mL	_		Resonance frequency shifts induced by mass-amplifying gold nanoparticles was used to detect prostate cancer. This approach has many advantages, including high specificity, sensitivity, and lack of need for amplification steps.	S6

	mL ⁻¹			combining PCR amplification and signals amplification of cationic conjugated	
				polymers.	
Digital-direct-RT- PCR	5 cells			The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-	
				fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the	S8
				direct analysis and detection of individual CTC without RNA isolation.	
				A multiplex PCR-based method was developed for detection of circulating tumor	
Multiplex PCR	10 cells	_		cells in peripheral blood of Lung Cancer using CK19, PTHrP, and LUNX specific	S9
				primers.	
Microfluidic surface	5 0 colla			A nanostructured chip surface was fabricated enabling binding via spaced antibodies	
acoustic wave(SAM)	50 cells	real-time		specifically targeting surface proteins of cancer cells and detection of extremely low	S10
sensor system	IIIL ·			numbers of CTC without labeling using a sam®5 biosensor.	
				The sensor is constructed with an ordered arrangement of carbon nanotubes (CNTs)	
The proposed method	10 cells / mL	45 min	$10 - 10^5$ cells mL ⁻¹	and EpCAM antibodies, which are assembled on indium tin oxide (ITO) electrode	in this
				surface. The tumor cells bind to EpCAM antibodies cause increase of the electron-	study
				transfer resistance.	

Reference

- S1 S. K. Arya, K. Y. Wang, C. C. Wong and A. R. A. Rahman, *Biosens. Bioelectron.*, 2013, 41, 446-451.
- S2 M. M. Costa, A. Escosura-Muñiz, C. Nogués, L. Barrios, E. Ibáñez and A. MerkoçI, *Small*, 2012, **8**, 3605-3612.
- S3 Y. K. Chung, J. Reboud, K. C. Lee, H. M. Lim, P. Y. Lim, K. Y. Wang, K. C. Tang, H. M. Ji and Y. Chen, *Biosens. Bioelectron.*, 2011, 26, 2520-2526.
- S4 W. Liu, H. B. Wei, Z. Lin, S. F. Mao and J. M. Lin, *Biosens. Bioelectron.*, 2011, 28, 438-442.
- S5 T. R. Ger, H. T. Huang, C. Y. Huang and M. F. Lai, *Lab Chip*, 2013, **13**, 4225-4230.
- S6 J. A. Sioss, R. B. Bhiladvala, W. H. Pan, M. W. Li, S. Patrick, P. Xin, S. L. Dean, C. D. Keating, T. S. Mayer and G. A. Clawson, *Nanomedicine: NBM*, 2012, 8, 1017-1025.
- S7 J. Z. Song, F. T. Lv, G. M. Yang, L. B. Liu, Q. Yang and S. Wang, *Chem. Commun.*, 2012, 48, 7465–7467.
- S8 C. Pfitzner, I. Schröder, C. Scheungraber, A. Dogan, I. B. Runnebaum, M. Dürst and N. Häfner, *Sci. Rep.*, 2014, **4**, 3970.
- S9 A. Katseli, H. Maragos, A. Nezos, K. Syrigos and M. Koutsilieris, *Clin. Lung Cancer*, 2013, **14**, 513-520.
- S10 P. Bröer, K. Lücke, M. Perpeet and T. M. A. Gronewold, *Sens. and Act. B*, 2012, **165**, 1-6.