Electronic Supplementary Information

Graphitic carbon nitride nanosheets: one-step high-yield synthesis and application for Cu²⁺ detection

Ningyan Cheng,^{a,b} Ping Jiang,^a Qian Liu,^a Jingqi Tian,^{a,b} Abdullah M. Asiri^{c,d} and Xuping Sun^{a,c,d*}

Experimental section

Material: KBH₄ and Sodium hexametaphoshpate were purchased from Aladdin Ltd. (Shanghai, China). Na₂SO₄, Na₂S₂O₈, Tris, HCl, Co(NO₃)₂·6H₂O, Fe(NO₃)₃·9H₂O, Hg(NO₃)₂, Mg(NO₃)₂·6H₂O, Ni(NO₃)₂·6H₂O, Pb(NO₃)₂, Zn(NO₃)₂·6H₂O, Mn(NO₃)₂ and melamine were purchased from Beijing Chemical Corp. All chemicals were used as received without further purification.

Characterizations: SEM measurements were made on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. AFM analysis was taken with MultiMode-V (Veeco Metrology, Tnc.). TEM measurements were made on a Hitachi H-8100 EM (Hitachi, Tokyo, Japan) with an accelerating applied potential of 200 kV. XRD data were collected using a RigakuD/MAX 2550 diffractometer with Cu K α radiation (λ =1.5418 Å). The UV-vis spectra were recorded on a UV580C spectrophotometer. RF-5301PC was used to record the fluorescent emission spectra. The ECL curves were recorded using a MPI-A electrochemiluminescence analyzer system (Xi'an Remax Analysis Instrument Co., Ltd., Xi'an, China).

Preparation of g-C₃N₄ nanosheets and b-g-C₃N₄: g-C₃N₄ nanosheets were prepared as follows. In brief, melamine and KBH₄ with a mole ratio of 5:1 were mixed together

and heated at 550 $^{\circ}$ C for 4 h in Ar atmosphere. 0.5 g products were dispersed in 500 mL water for characterization and further use. For comparison, b-g-C₃N₄ was obtained using the same procedure without the presence of KBH₄.

Detection of Cu²⁺: The detection of Cu²⁺ was performed in tris-HCl (pH =7.0) at room temperature. In detail, 4.5 μ L of g-C₃N₄ nanosheets dispersion was added into 250 μ L of tris-HCl buffer first, then certain amount of Cu²⁺ was added to it. The fluorescent emission spectra were studied at room temperature after reaction for 10 min.

Analysis of real water samples: The real water samples were taken from the South Lake of Changchun, Jilin province, China. These samples were filtered through a 0.22 μ m membrane and then centrifuged at 12000 for 10 min. The resultant water samples were spiked with standard solutions containing different concentrations of Cu²⁺.

Preparation of g-C₃N₄ nanosheets modified FTO glass: 100 μ L g-C₃N₄ nanosheets dispersion and 10 μ L of Nafion (0.5 wt%) were dropped on cleaned FTO glass and dried in air for further use.

Electrochemistry and electrochemiluminescence of $g-C_3N_4$ nanosheets: ECL investigations were carried out in 0.1 M Na₂SO₄ containing 3 mM Na₂S₂O₈. ECL signals were obtained by cyclic voltammetry between 0 to -1.3V with a three electrode system, using Ag/AgCl as reference electrode, Pt wire as counter electrode and $g-C_3N_4$ nanosheets modified FTO glass as working electrode.

Fig. S1 Curve of PL intensity of the $g-C_3N_4$ nanosheet and irradiation time.

Scheme S1

 Table S1 Comparison of sensing performance of different fluorescent probes for Cu²⁺

 detection.

Fuorosensor	Detection limit (nM)	Linear range (nM)	Ref.
CdS QDs	100	-	4a
16-MHA capped CdSe QDs	5	5-1×10 ⁵	4b
PPNDs	1	0-5×10 ⁴	6
c-mpg-C ₃ N ₄	12.3	10-100	11
ultrathin g-C ₃ N ₄ nanosheets	0.5	0-1×10 ⁴	12
F-g-C ₃ N ₄ dots	0.5	0-5×10 ⁴	19
pyridoxal-based chemosensor	140	0-5×10 ⁴	20a
BCNO NPs	100	0-5×10 ⁴	20b
g-C ₃ N ₄ nanosheets	0.5	0-1×10 ³	This work

Metal ions	Selectivity coefficient	
Co ²⁺	21.26	
Fe ³⁺	18.58	
Hg ²⁺	50.01	
Mg ²⁺	11.83	
Mn ²⁺	34.84	
Ni ²⁺	27.21	
Pb ²⁺	21.56	
Zn ²⁺	11.61	

Table S2. Selectivity coefficients of Cu^{2+} against other metal ions.

Fig. S2 PL spectra of $g-C_3N_4$ nanosheets dispersion in the presence of different Cu²⁺ concentration (from top to bottom: 0, 10, 20, 30, 40, 50 nM) in lake water. Inset: dependent of $1-F/F_0$ on the concentration of Cu²⁺ ions within the range of 0-50 nM (excitation at 335 nm; F_0 and F are the $g-C_3N_4$ nanosheets fluorescence intensities at 450 nm in the absence and presence of Cu²⁺ ions, respectively).