Electronic Supplementary Information

Luminescent CePO₄:Tb colloids for H₂O₂ and glucose sensing

Changjian Lv, Weihua Di*, Zhihe Liu, Kezhi Zheng, and Weiping Qin*

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.

E-mail: <u>whdi@jlu.edu.cn</u> (W. Di); <u>wpqin@jlu.edu.cn</u> (W. Qin) Tel: 86-431-85168240-8325, Fax: 86-431-85168240-8325

^{*} Corresponding authors: 2699 Qianjin Street, Changchun 130012, China. E-mail: <u>whdi@jlu.edu.cn</u> (W. Di); <u>wpqin@jlu.edu.cn</u> (W. Qin) Tel: 86-431-85168240-8325, Fax: 86-431-85168240-8325

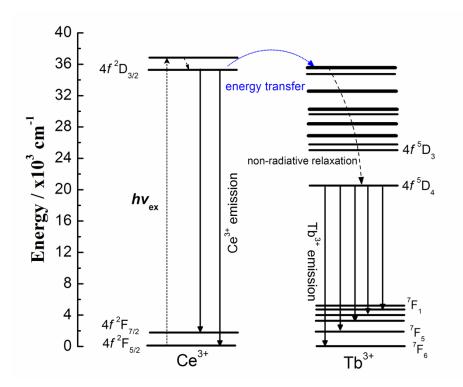


Fig. S1 schematic image for the energy level of Ce^{3+} and Tb^{3+} with optical transitions, and the energy transfer processes Ce^{3+} to Tb^{3+} .

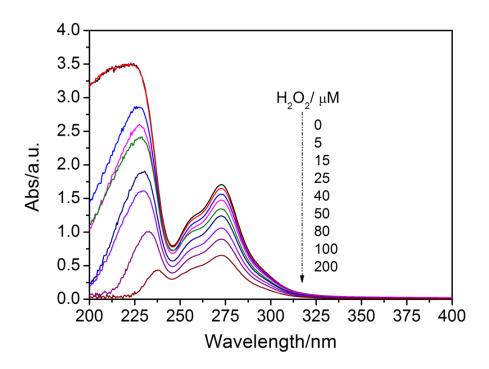


Fig. S2 UV-vis absorption spectra recorded for the as-synthesized $CePO_4$:Tb and for $CePO_4$:Tb samples with treatment of various concentrations of H_2O_2 .

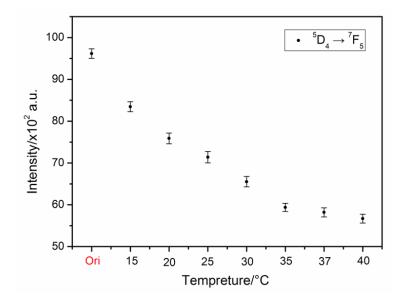


Fig. S3 The temperature-dependent catalytic activity of GOx was examined by recording the emission spectra of CePO₄:Tb as a function of temperature in the presence of glucose and GOx. We choose the $Tb^{3+} {}^{5}D_{4} - {}^{7}F_{5}$ emission for comparison.

We can see that the emission intensity of ${}^{5}D_{4}$ – ${}^{7}F_{5}$ decreases with the increase of temperature up to 37 °C, and keep almost constant while temperature was further increased. Thus, 37 °C was taken as the optimal reaction temperature.