Supporting Information

A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides

Yonglan Wang,^{*a*} Jun Jin,^{*b*} Caixia Yuan,^{*a*} Fan Zhang,^{*a*} Linlin Ma,^{*a*} Dongdong Qin,^{*a*} Duoliang Shan,^{*a*} Xiaoquan Lu **^a*

Results and discussion

Figure S1.

Figure S2.

^a Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, 730070, China; E-mail: taaluxq@gmail.com

^b College of Chemistry and Chemical Engineering, Lanzhou University.

^{*} Corresponding author

Figure Captions

Fig.S1 EDS spectrum of the synthesized ZrO₂/OMP/GCE.

Table S1 The corresponding element content of EDS results of the ZrO₂/OMP/GCE.

Fig. S2 Effect of interferences on the response currents. Experiments were performed with 0.1 M KClO₄ (pH 6.0) containing 0.1 mM MP in the absence and presence of 20-fold carbaryl (1), nitrobenzene (2), p-nitrophenol (3) and 0.1 M PO_4^{3-} (4), CO_2^{2-} (5), NO_3^{-} (6). Histogram inset was relationship between peak current and added different interferences substances.