Supplementary Information

Label-free electrochemical immunosensor based on ionic organic molecule and chitosan-stabilized gold nanoparticles for the detection of cardiac troponin T

Daniela Brondani,** Jamille Valéria Piovesan, Eduard Westphal, Hugo Gallardo, Rosa Amalia Fireman Dutra, Almir Spinelli, Iolanda Cruz Vieira*

^a Laboratory of Biosensors, Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.

^{*}E-mail address: <u>danielabrondani@hotmail.com</u> (D. Brondani); <u>iolanda.vieira@ufsc.br</u> (I. C. Vieira). Phone: + 55 48 3721 6844; Fax: + 55 48 3721 6850.

^b Group of Studies of Electrochemical and Electroanalytical Processes, Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.

^c Laboratory of Synthesis of Liquid Crystals, Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.

^d Biomedical Engineering Laboratory, Technology Center, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil.

Synthesis and characterization of ionic organic molecule I-Py

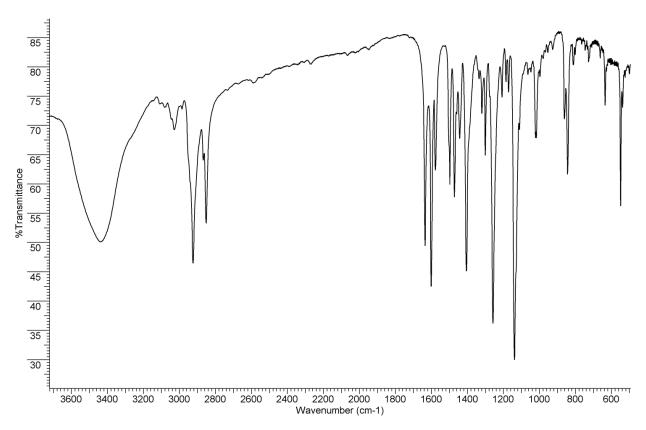


Fig. S1. IR spectrum for the ionic product I-Py in KBr.

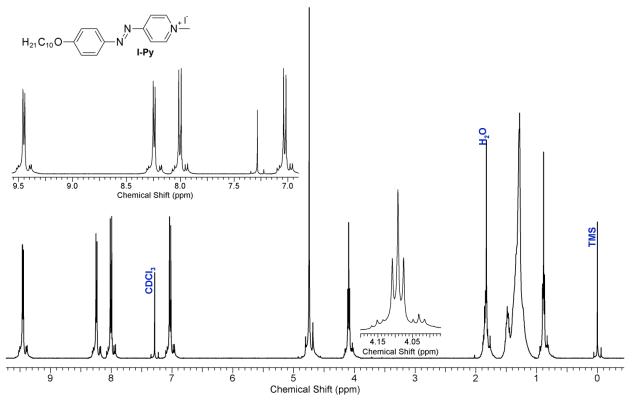


Fig. S2. ¹H NMR (400 MHz) spectrum for the ionic product I-Py in CDCl₃.

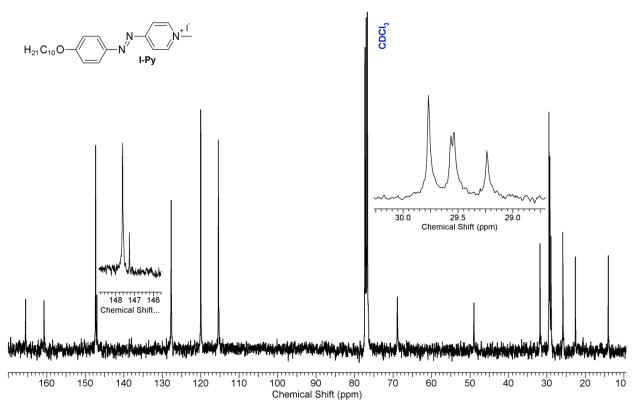
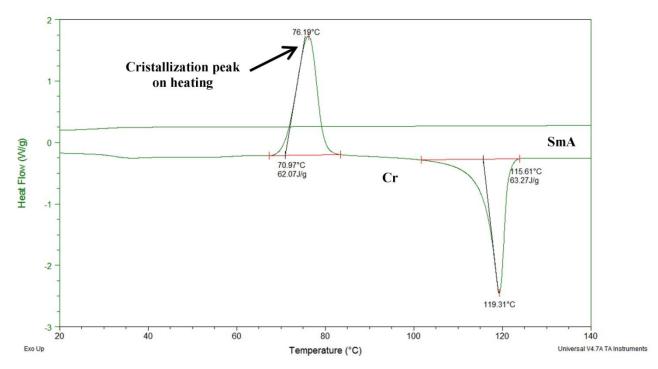
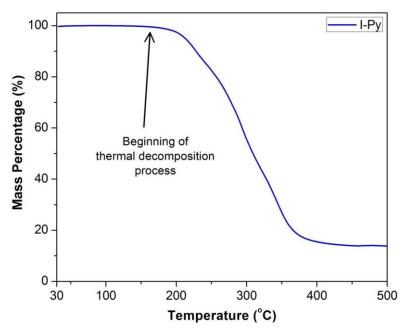




Fig. S3. ¹³C NMR (100.6 MHz) spectrum for the ionic product I-Py in CDCl₃.

Thermal Characterization of I-Py

Fig. S4. Thermal transitions for the compound **I-Py** determined by DSC using a heating/cooling rate of 10 $^{\circ}$ C min⁻¹ and N₂ flow (50 mL min⁻¹). The curves correspond to the first cooling and to the second heating scans.

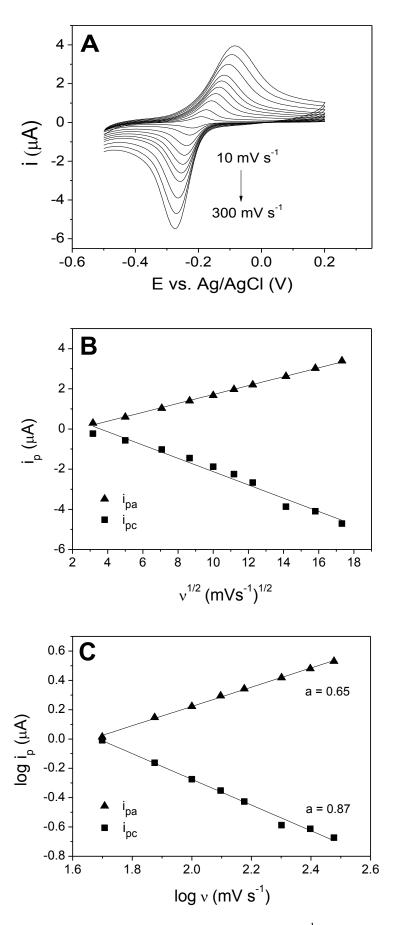


Fig. S5. Thermogravimetric analysis (TGA) plot for the ionic product **I-Py** under N_2 flow (20 mL min⁻¹) with a heating rate of 10 °C min⁻¹.

Electrochemical behavior of ionic organic molecule I-Py

Fig. S6. Proposed chemical equation for the redox process of I-Py.

Figure S7-A shows the influence of the scan rate (ν) on the voltammetric profile for the I-Py modified electrode in phosphate buffer solution (pH 7.0, 0.1 mol L⁻¹). The scan rate was varied from 10 to 300 mV s⁻¹. The reaction is quasi-reversible because the potentials shifted with increasing scan rate. In addition, the cathodic current- i_{pc} /anodic current- i_{pa} ratio deviated slightly from 1.0. The currents of both peaks changed linearly with the square root of the scan rate (Fig. S7-B). The corresponding linear regression equations are i_{pa} / μ A = -1.09 + 0.65 ν / (mV s⁻¹) ν (r² = 0.998) and i_{pc} / ν A = 1,47 - 0,87 ν / (mV s⁻¹) ν (r² = 0.990). These results indicate that the redox reaction of I-Py is a diffusion-controlled process. Moreover, the plot of log i_p ν s. log ν (Fig. S7-C) exhibited a slope of 0.65 for the oxidation reaction and 0.87 for the reduction reaction, clearly indicating that the current for both reactions was diffusion-controlled with a contribution from adsorption.

Fig. S7. (A) Cyclic voltammograms for I-Py sensor in 0.1 mol L⁻¹ phosphate buffer (pH 7.0), v = 10 a 300 mV s⁻¹; (B) plot $i_p vs. v^{1/2}$; (C) plot $\log i_p vs. \log v$.

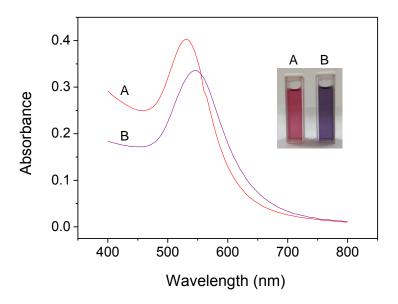


Fig. S8. UV-vis spectra of the CTS-stabilized AuNP (A) before and (B) after addition of anti-cTnT.