Supporting Information For

A napthelene-pyrazol conjugate: Al(III) ion selective blue shifting chemosensor applicable as biomarker in aqueous solution

Manjira Mukherjee,^a Siddhartha Pal,^a Somenath Lohar,^a Buddhadeb Sen,^a Supriti Sen,^a Samya Banerjee,^b Snehasis Banerjee^c and Pabitra Chattopadhyay^a*

^aDepartment of Chemistry, Burdwan University, Golapbag, Burdwan-713104, West Bengal, India, E-mail: pabitracc@yahoo.com

^bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India

^c Govt. college of Engineering and Leather Technology, Salt Lake Sector-III, Kolkata 9

CONTENTS

- 1. Fig. S1 ¹H NMR spectrum of HL in DMSO-d₆
- 2. Fig.S2 Mass spectrum of HL
- 3. Fig. S3 IR spectrum of HL
- 4. Fig. S4 ¹H NMR spectrum of L-Al complex of HL in DMSO-d₆
- 5. Fig. S5 IR spectrum of the L-Al complex
- 6. Fig. S6 Mass spectrum of the L-Al complex
- 7. Fig.S7 Theoretically optimised structure of HL and the L-Al complex
- 8. Fig.S8 Energy level diagram for the frontier p-MOs of HL (left) and L-Al complex (right).

9. Fig.S9 Fluorescence and naked eye colour of the probe in absence and presence of Al(III) ion

- 10. Fig. S10 Absorption and emission spectra of 10 μ M of the probe in 100 mM HEPES buffer (DMSO/water 1:5, v/v) at 27°C
- 11. Fig. S11 Fluorescence intensity of HL in presence of different cations

12. Fig.S12 Change of relative fluorescence intensity profile of HL in presence of different cations

- 13. Fig.S13 Time-resolved fluorescence decay of HL (10 mM) in the absence and presence of added Al(III) (5 mM and 10 mM) (at $\lambda_{ex} = 405$ nm) in 100 mM HEPES buffer (DMSO/ water: 1/5, v/v) [λ_{em} : 450 nm].
- 14. Table S1 Life time details of HL
- 15. Fig. S14¹HNMR titration of HL (Expansion of aromatic region)
- 16. Fig. S15 ¹HNMR titration of HL
- 17. Fig. S16 Fluorescence response to pH of HL (10 μ M) in absence and in presence of HSO₄⁻ (one equivalent) at different pH in 100 mM HEPES buffer (DMSO/ water: 1/5) at 27 °C.
- 18. Fig. S17 Cytotoxic effect of HL
- 19. Fig. S18 Crystal Packing of HL

Fig. S1 ¹H NMR spectrum of HL in DMSO-d₆

Fig. S3 IR spectrum of HL

Fig. S4 ¹H NMR spectrum of Al(III) complex of HL in DMSO-d₆

Fig. S5 IR spectrum of L-Al complex

Fig.S6 Mass spectrum of L-Al complex

Fig.S7 Theoretically optimised structure of HL (left) and the L-Al complex (right)

Fig.S8 Energy level diagram for the frontier p-MOs of **HL** (left) and **L-Al** complex (right).

Fig.S9 Fluorescence (left) and naked eye (right) colour change of the probe in absence and presence of Al(III) ions

Fig.S10 Absorption and emission spectra of 10 μ M of the probe in 100 mM HEPES buffer (DMSO/water 1:5, v/v) at 27°C

Fig. S11 Fluorescence intensity of HL in presence of different cations

Fig. S12 Change of relative fluorescence intensity profile of **HL** in presence of different cations

	B ₁	B ₂	T ₁ (ns)	T ₂ (ns)	T _{av} (ns)	χ^2	ф	Kr	K _{nr}
Probe	96.48	3.52	0.0277	0.911	0.033	1.05	0.1016	3.07878	27.224
Probe + Al ³⁺ (1:0.5)	92.82	7.18	0.141	3.572	0.26	1.03	-	-	-
Probe + Al ³⁺ (1:1)	89.11	10.89	0.553	5.61	0.61	1.02	0.329	0.5393	1.100044

Table S1 Life time details of HL

Fig. S13 Time-resolved fluorescence decay of **HL** (10 mM) in the absence and presence of added Al(III) ions (5 mM and 10 mM) (at $\lambda_{ex} = 405$ nm) in 100 mM HEPES buffer (DMSO/ water: 1/5, v/v) [λ_{em} : 450 nm].

Fig. S14 ¹HNMR titration of HL(Expansion of aromatic region) in DMSO-d6 (a) <10 μ M (b) 10 μ M (c) 0 μ M Al(III)

Fig. S15 ¹HNMR titration of HL in DMSO-d₆ (a) <10 μ M (b) 10 μ M (c) 0 μ M Al(III) ions

Fig. S16 Fluorescence response to pH of HL (10 μ M) in absence and in presence of Al(III) (one equivalent) at different pH in 100 mM HEPES buffer (DMSO/ water: 1/5) at 25 °C.

Fig. S17 Cytotoxic effect of HL

Fig. S18 Crystal Packing of HL