Supporting Information

Sensitively monitoring photodegradation of organic dye molecules by

surface-enhanced Raman scattering

Suhua Qin^{a, b}, Wenya Cai^{a, b}, Xianghu Tang^b, Liangbao Yang *a,b

(aDepartment of Chemistry, Anhui University, Hefei, Anhui, 230601, China, b

Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China)

Figure S1. Reaction kinetics study of photocatalytic degradation of CV over Fe₃O₄@SiO₂@TiO₂@Ag by SERS: the ln ($-(\partial(I_t/I_0))/(\partial t)(1/\eta)$) versus ln(I_t/I_0) plot in which the slope of the linearly fitted line corresponds to the reaction order with respect to CV (*n*), indicating first-order kinetics.

Figure S2. Reaction rate constants study of photocatalytic degradation of CV over $Fe_3O_4@SiO_2@TiO_2@Ag$ by SERS: Time-dependent of SERS spectra of the CV solution on $Fe_3O_4@SiO_2@TiO_2@Ag$ (left) and plots of the Raman intensity at 1172 cm⁻¹ versus reaction time ((I_t / I₀) ~ t plot) for the photocatalytic degradation of CV (right) in the presence of $Fe_3O_4@SiO_2@TiO_2@Ag$ composite.

Figure S3. (A) Time-dependent UV-vis absorbance spectra of CV solution in the presence of $Fe_3O_4@SiO_2@TiO_2@Ag$ composites after exposure to UV light for different durations. (B) Photodegradation rates of CV in the absence of catalysts (a), in the presence of $Fe_3O_4@SiO_2@TiO_2$ (b) and the $Fe_3O_4@SiO_2@TiO_2@Ag$ composites (c). The initial concentrations of CV solution was 1.0×10^{-5} M.