Spray coated all-solid-state potentiometric sensors

Ewa Jaworska¹, Morten Schmidt², Giuseppe Scarpa², Krzysztof Maksymiuk¹ and Agata Michalska¹

¹Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland ² Technische Universität München, Institute for Nanoelectronics, Arcisstrasse 21, 80333 München, Germany

Supporting information

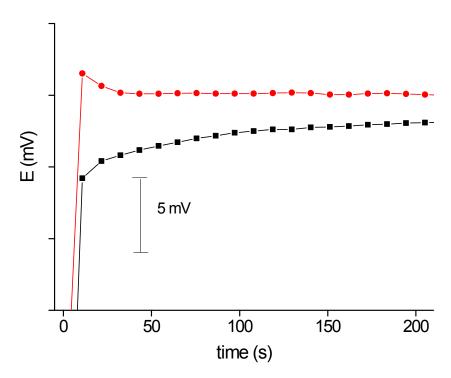


Fig. S1. Response time of tested sensors for electrolyte concentration changes from 10⁻² to 10⁻³ M KCl prepared using (■) PET or (•) Kapton substrate.

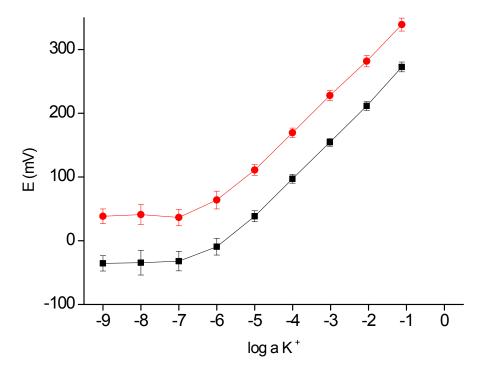


Fig. S2. Mean potential values \pm SD recorded in course of three calibrations performed during four days (different bath Kapton based electrode compared to that presented in Fig. 2) for spray coated sensors using either: (\blacksquare) PET or (\bullet) Kapton, substrate.

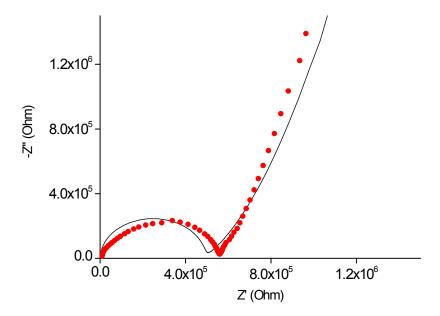


Fig. S3. Complex plane impedance plots - of tested spray coated K⁺- electrodes prepared using (•) Kapton recorded in 0.1 M KCl solution [Fig. 3], using 50 mV amplitude at 0.3 V potential, in the frequency range from 0.01 Hz to 10⁵ Hz compared to (black line) fitting to equivalent circuit presented in Fig. 3 using fitting tools of CH-Instruments software.