Analyst

RSCPublishing

Supporting information for

Cite this: DOI: 10.1039/c4an01505c	Colorimetric and ratiometric pH responses by the protonation of phenate within hemicyanine						
	Jia-Tao Miao, ^a Chen Fan, ^b Xiao-Yu Shi, ^a Ru Sun, ^{*a} Yu-Jie Xu ^b and Jian-Feng Ge ^{*a,c}						
Received 16th August 2014 Accepted 16th September 2014 DOI: 10.1039/c4an01505c	^a College of Chemistry, Chemical Engineering and Material Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China. E-mail: sunru924@hotmail.com, ge_jianfeng@hotmail.com.						
www.rsc.org/	^b School of Radiation Medicine and Protection, Medicinal College of Soochow University, Suzhou 215123, China.						
	^c Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.						

Index

Table S1The frontier molecular orbital energy and HOMO-LUMO gaps of probes 1a-b in their
deprotonated/protonated forms at the ground state (S₀ state) and the lowest excited state (S₁ state)......S3Table S2Selected parameters for the vertical excitation (UV-vis absorptions) of probes 1a-b in their
deprotonated/protonated forms based on the optimized ground state geometries.S3Table S3Selected parameters for emission related of probes 1a-b in their deprotonated/protonated forms based
on the optimized lowest singlet excited state geometriesS3Fig. S1Excitation spectra of probes 1a-b (10 μ M) in basic and acidic conditions. (a) Probe 1a. (b) Probe 1b........S3Fig. S2The frontier molecular orbitals (FMOs) plots of probe 1b in their protonated (the left column) and
deprotonated (the right column) forms.S4Fig. S3Optical responses of 1b (10 μ M) towards different analytes. (a, b) Absorption spectra. (c, d) Emission
spectra. (a, c) Tested in basic buffer solutions with pH = 8.2. (b, d) Tested in acidic buffer solutions with pH = 5.2.Used analytes: K⁺ (100 mM), Na⁺ (100 mM), Ca²⁺ (0.5 mM), Cd²⁺ (0.3 mM), Cu²⁺ (0.3 mM), Mg²⁺ (0.5 mM), Co²⁺ (0.3

Supporting information

mM), Hg ²⁺ (0.3 mM), Mn ²⁺ (0.3 mM), Ni ²⁺ (0.3 mM), Cys (0.1 mM), Phe (0.1 mM), Gly (0.1 mM), Glu (0.1 mM),	Arg
(0.1 mM), Lys (0.1 mM), Pro (0.1 mM), Try (0.1 mM) and His (0.1 mM)	S4
Fig. S4 Fluorescence intensity changes of probe 1a (10 μ M) in the absence of 10% FBS serum in the buffer solut	tion.
(a) Fluorescent spectra; (b) Time-dependent fluorescence intensity changes at 651 nm of probe 1a	S4
Fig. S5 Concentration related absorptions of probe 1b (2, 4, 6, 8, 10 and 20 μ M) in basic and acidic conditions.	. (a,
c) Normalized absorption spectra. (b, d) The linear relationship of absorption intensity and concentration. (a	ı, b)
Tested in basic buffer solutions with pH = 9.2. (c, d) Tested in acidic buffer solutions with pH = 4.8	S5
Fig. S6 ¹ H NMR of 4a in DMSO-d ₆	S5
Fig. S7 ¹³ C NMR of 4a in DMSO- <i>d</i> ₆	S6
Fig. S8 HRMS of 4a	S6
Fig. S9 ¹ H NMR of 4b in DMSO- <i>d</i> ₆	S7
Fig. S10 ¹³ C NMR of 4b in DMSO- <i>d</i> ₆	S7
Fig. S11 HRMS of 4b.	S8
Fig. S12 ¹ H NMR of 1a in DMSO- d_6	S8
Fig. S13 ¹³ C NMR of 1a in DMSO- <i>d</i> ₆	S9
Fig. S14 HRMS of 1a	S9
Fig. S15 ¹ H NMR of 1b in DMSO- <i>d</i> ₆	S10
Fig. S16 ¹³ C NMR of 1b in DMSO- <i>d</i> ₆	S10
Fig. S17 HRMS of 1b.	S11

prob	e	HOMO (eV)	LUMO (eV)	$\Delta E_{H-L} (eV)$
1a	S0	-5.608	-3.945	1.663
	S 1	-5.527	-4.133	1.394
1a -H ⁺	S0	-4.813	-3.316	1.497
	S 1	-4.850	-3.519	1.331
1b	S0	-5.692	-4.018	1.674
	S 1	-5.718	-4.309	1.409
1b -H ⁺	S0	-4.888	-3.427	1.461
	S 1	-4.939	-3.632	1.307

Table S1 The frontier molecular orbital energy and HOMO-LUMO gaps of probes 1a-b in their deprotonated/protonated forms at the ground state (S₀ state) and the lowest excited state (S₁ state).

Table	S2	Selected	parameters	for	the	vertical	excitation	(UV-vis	absorptions)	of	probes	1a-b	in	their
deproto	nate	d/protonate	ed forms base	ed on	the	optimized	ground stat	e geometr	ies.					

nrohe	nraha	Electronic transitions	Excitatio	on energy) /nm	fa	Composition ^b	CIC
_	probe EI	Electronic transitions	E/eV	λ/nm	λexp./mm	<i>J</i> =	Composition	CI
-	1a	$S_0 \rightarrow S_1$	2.56	484	455	1.8002	H→L	0.70767
	1a -H ⁺	$S_0 \rightarrow S_1$	2.27	547	578	1.7470	H-2→L	0.17620
							H→L	0.69478
	1b	$S_0 \rightarrow S_1$	2.32	484	448	1.7774	H→L	0.70692
	1b -H ⁺	$S_0 \rightarrow S_1$	2.22	560	558	1.8101	H-2→L	0.12722
							H→L	0.70153
^a Oscillator s	trength. b	H stands for HOMO and	l L stands	for LUMO	. ^c Coeffici	ent of the	wavefunction for	r each excitations

Table S3 Selected parameters for emission related of probes 1a-b in their deprotonated/protonated forms based on the optimized lowest singlet excited state geometries.

nraha		Electronic transitions	Excitation energy		2 /	fa	Compositionh	CIC	
_	probe	Electronic transitions	E/eV	λ/nm	λexp./nm	<i>J</i>	Composition	CI	
	1a	$S_0 \rightarrow S_1$	2.11	586	594	1.4680	H-1→L	0.12808	
							H→L	0.70156	
	1a -H ⁺	$S_0 \rightarrow S_1$	1.97	628	654	1.2398	H-2→L	0.19990	
							H→L	0.68657	
	1b	$S_0 \rightarrow S_3$	2.62	474	594	1.0084	H-5→L	-0.12584	
							H-3→L	0.32928	
							H-1→L	0.61414	
	1b -H ⁺	$S_0 \rightarrow S_2$	2.11	587	659	1.8209	H→L	0.71262	
Oscillator st	rength. b	H stands for HOMO and	d L stands	for LUMC	D. ^c Coeffici	ent of the	wavefunction fo	r each excitat	

Fig. S1 Excitation spectra of probes 1a-b (10 μ M) in basic and acidic conditions. (a) Probe 1a. (b) Probe 1b.

Fig. S2 The frontier molecular orbitals (FMOs) plots of probe **1b** in their protonated (the left column) and deprotonated (the right column) forms.

Fig. S3 Optical responses of **1b** (10 μ M) towards different analytes. (a, b) Absorption spectra. (c, d) Emission spectra. (a, c) Tested in basic buffer solutions with pH = 8.2. (b, d) Tested in acidic buffer solutions with pH = 5.2. Used analytes: K⁺ (100 mM), Na⁺ (100 mM), Ca²⁺ (0.5 mM), Cd²⁺ (0.3 mM), Cu²⁺ (0.3 mM), Mg²⁺ (0.5 mM), Co²⁺ (0.3 mM), Hg²⁺ (0.3 mM), Mn²⁺ (0.3 mM), Ni²⁺ (0.3 mM), Cys (0.1 mM), Phe (0.1 mM), Gly (0.1 mM), Glu (0.1 mM), Arg (0.1 mM), Lys (0.1 mM), Pro (0.1 mM), Try (0.1 mM) and His (0.1 mM).

Fig. S4 Fluorescence intensity changes of probe 1a (10 μ M) in the absence of 10% FBS serum in the buffer solution. (a) Fluorescent spectra; (b) Time-dependent fluorescence intensity changes at 651 nm of probe 1a.

Fig. S5 Concentration related absorptions of probe **1b** (2, 4, 6, 8, 10 and 20 μ M) in basic and acidic conditions. (a, c) Normalized absorption spectra. (b, d) The linear relationship of absorption intensity and concentration. (a, b) Tested in basic buffer solutions with pH = 9.2. (c, d) Tested in acidic buffer solutions with pH = 4.8.

Fig. S6 ¹H NMR of 4a in DMSO- d_6 .

Supporting information

Fig. S7 ¹³C NMR of 4a in DMSO-*d*₆.

Fig. S8 HRMS of 4a.

Fig. S9 ¹H NMR of 4b in DMSO- d_6 .

Fig. S10¹³C NMR of 4b in DMSO-*d*₆.

Fig. S11 HRMS of 4b.

Fig. S12 ¹H NMR of 1a in DMSO- d_6 .

Fig. S13 13 C NMR of 1a in DMSO- d_6 .

Paper

Fig. S15 ¹H NMR of 1b in DMSO-*d*₆.

Fig. S17 HRMS of 1b.