Supporting Informantion

Amperometric hydrogen peroxide and glucose biosensor based on

the NiFe₂/ordered mesoporous carbon nanocomposites

Dong Xiang^{a,b,*}, Longwei Yin^{b,*}, Jingyun Ma^b, Enyan Guo^b, Qun Li^b,

Zhaoqiang Li^b, Kegao Liu^a

^a School of Material Science and Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China. E-mail:<u>xiang@sdjzu.edu.cn;</u> Tel.: + 86 531 86367285.

 ^b Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China. E-mail: <u>yinlw@sdu.edu.cn</u>; Tel.: + 86 531 88396970; Fax: + 86 531 88396970.

Fig. S1 Nyquist diagram of electrochemical impedance spectroscopy in 0.1 M PBS (pH 7.0) containing 1.0 mM H₂O₂ at Ni/OMC+Nafion+GCE and NiFe₂/OMC+Nafion+GCE.

Fig. S2 Cyclic voltammograms (CVs) of OMC+Nafion+GCE and NiFe_x/OMC+Nafion+GCE (*x*=0, 1, 2) of 1.0 mM H₂O₂ in 0.1 M PBS, scan rate: 50 mV/ s.

Fig. S3 (a) Cyclic voltammograms (CVs) of NiFe₂/OMC+Nafion+GCE of 1.0 mM H₂O₂ in 0.1 M PBS at different pHs from 5 to 9, scan rate: 50 mV/s, (b) effects of solution pH on the E_{pa} (red rotundity) *vs.* I_{pa} (blue triangle).

Fig. S4 Dynamic response (current *vs* time, *I-t*) of the biosensor to successive addition of 1 mM H_2O_2 steps in the 0.1 M PBS (pH 7) solution at the applied potential of -0.2 V in N_2 saturated , rotation speed: 400 rpm, (a), the resulting data was processed and plotted as a scatter plot (current

vs. concentration) with linear regression analysis (b) for the NiFe_x/OMC electrodes.

Fig. S5 The redox reaction drawing for H_2O_2 at NiFe_x/OMC+Nafion+GCE.

Fig.S6 Nyquist diagram of electrochemical impedance spectroscopy in 0.1 M PBS (pH 6.5) containing 1.0 mM glucose at GOx+Ni/OMC+Nafion+GCE and GOx+NiFe₂/OMC+Nafion+GCE.

Fig. S7. Cyclic voltammograms (CVs) of GOx+ OMC+Nafion+GCE and GOx+NiFe_x/OMC+Nafion+GCE (*x*=0, 1, 2) of 1.0 mM glucose in 0.1 M PBS, scan rate: 50 mV/s.

Fig. S8 Cyclic voltammograms of GOx+NiFe₂/OMC+Nafion+GCE of 0.5 mM glucose in 0.1 M PBS at different pHs from 6 to 8, scan rate: 50 mV/s, (b) effects of solution pH on the E_{pa} (red rotundity) *vs I*_{pa} (blue triangle).

Fig. S9 (a) Dynamic response of the GOx+NiFe_x/OMC+Nafion+GCE sensor to successive injection of 0.5 mM glucose steps in the 0.1M PBS (pH 6.5) solution at the applied potential of – 0.2 V in N₂ saturated, rotation speed: 400 rpm, (b) the resulting data was processed and plotted as a scatter plot (current *vs* concentration) with linear regression analysis.