
Electronic Supplementary Information for

Miniaturisation and simplification of solid-state proton activity sensor for non-aqueous media and ionic liquids

Orawan Winther-Jensen*, Jessie L. Hamilton, Chun Ng, Bartlomiej Kolodziejczyk and Bjorn Winther-Jensen

Schematic for ΔE_{half} measuring principle

Figure S1 A sample CV showing the measuring principle of PEDOT:RFN-Fc electrodes. E_{ox} and E_{red} of RFN and Fc give E_{half} of each redox couple. ΔE_{half} defines the potential between E_{half} of the Fc reference redox couple and E_{half} of the RFN redox couple. ΔE_{half} will vary with the change in pH as the E_{half} of RFN change according to the pH. Consequently, a calibration curve from ΔE_{half} and pH changes can be constructed.

Full Raman spectra and assignments

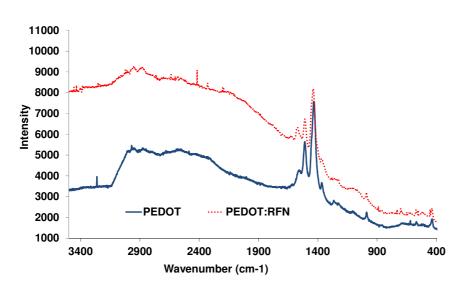
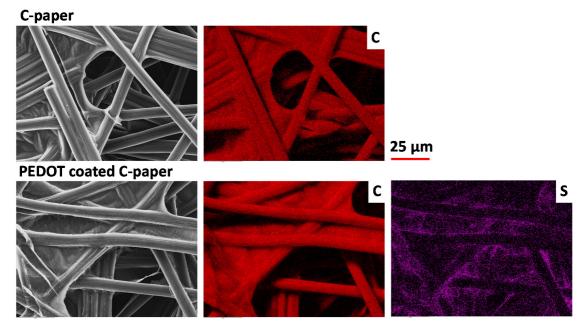
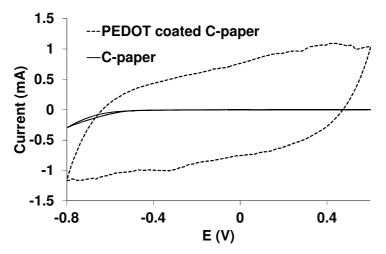



Figure S2 Raman spectra of PEDOT and PEDOT:RFN.

The intense peak at around 1433 cm⁻¹ (for PEDOT) and 1444 cm⁻¹ (for PEDOT:RFN) is attributed to the symmetric $C_{\alpha}=C_{\beta}$ stretching [1]. The bands at around 1511 cm⁻¹, 1368 cm⁻¹, 1267 cm⁻¹ are assigned to the antisymmetric $C_{\alpha}=C_{\beta}$ stretching, $C_{\beta}-C_{\beta}$ stretching and interring $C_{\alpha}-C_{\alpha}$ stretching respectively [1]. Deformation of the oxyethylene ring appeared as the peak at 990 cm⁻¹ [1].


FTIR assignments for RFN and Fc

Main characteristic peaks of RFN have some intense characteristic peaks which are 1732 (assigned for C=O stretching), 1646 (assigned for C=C stretching), 1580 and 1540 cm-1 (assigned for C=N and C=C stretching) [2], and 1072 and 1014 cm⁻¹ which could be due to C-O stretching from alcohol groups. Fc peaks 1104, 999, and 813 cm⁻¹ have been assigned as C-Fe stretching, C-H out of plane bending (ring breathing), C-H ring metal stretching, respectively [3].

C-paper and PEDOT coated C-paper characterisation

Figure S3 SEM and EDX images of C-paper and PEDOT coated C-paper at 15 kV. For PEDOT coated C-paper, PEDOT coating is not blocking the C-paper pores and sulfur from PEDOT appeared as a thin layer coating on the C fibres (bottom right image).

Figure S3 CVs of PEDOT coated C-paper (dotted trace) and C-paper (solid trace) in 0.1 M PB pH 5 at 10 mV/s. Ag/AgCl (3 M NaCl) and large Ti mesh (~ 2.5 x 4 cm²) was used as reference and counter electrodes, respectively.

Stability of RFN and Fc peaks over repetitive CV scans

Table S1	% RSD of peak current upon three repetitive CV scans of PEDOT:RFN-Fc in
various ILs	

ILs	RFN		Fc	
	E _{ox}	E _{red}	E _{ox}	E _{red}
P _{1,3} NTf2	22	2	11	23
EMIm(CN) ₄ B	16	10	5	8
EMImSCN	10	14	17	16
67% P _{1,4,4,4} TOS in PC	4	31	54	43
EAN	19	9	7	15

Reference

[1] S. Garreau, G. Louarn, J.P. Buisson, G. Froyer, S. Lefrant, Macromolecules, 32 (1999) 6807-6812.

[2] S. Ye, F. Wei, Analyst, 136 (2011) 2489-2494.

[3] J.O. Enlow, H. Jiang, J.T. Grant, K. Eyink, W. Su, T.J. Bunning, Polymer, 49 (2008) 4042-4045.