Electronic Supplementary Information(ESI)

for

Azodye-Rhodamine-Based Fluorescent and Colorimetric Probe Specific for the Detection of Pd²⁺ in Aqueous Ethanolic Solution: Synthesis, XRD characterization, Computational Studies, and Imaging in Live Cells

Ajit Kumar Mahapatra*,^a Saikat Kumar Manna,^a Kalipada Maiti,^a Sanchita Mondal, ^a Rajkishor Maji,^a Debasish Mandal,^b Sukhendu Mandal,^c Md. Raihan Uddin,^c Shyamaprosad Goswami,^a Ching Kheng Quah^d and Hoong-Kun Fun^{d,e}

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, India.

^bInstitute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

^c Department of Microbiology, Ballygunge Science College, Kolkata- 700019

^d X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

^e Department of Pharmaceutical Chemistry College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451 Kingdom of Saudi Arabia.

*Corresponding author: Tel.: +91 33 2668 4561; fax: +91 33 26684564;

E-mail: mahapatra574@gmail.com

1. ¹H NMR spectrum of L (400 MHz, CDCl₃):

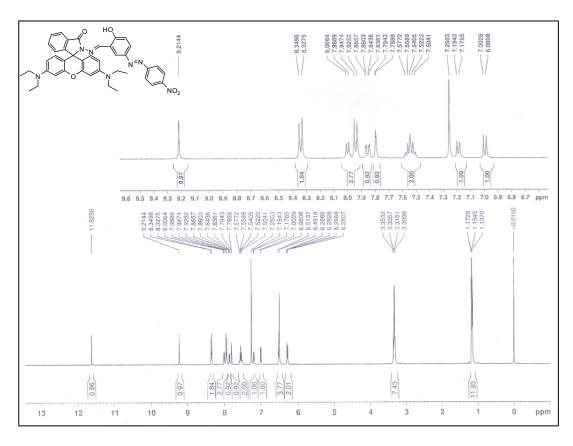


Figure S1: ¹H NMR spectrum of L in CDCl₃ solution.

$2.^{13}$ C NMR spectrum of L (400 MHz, CDCl₃):

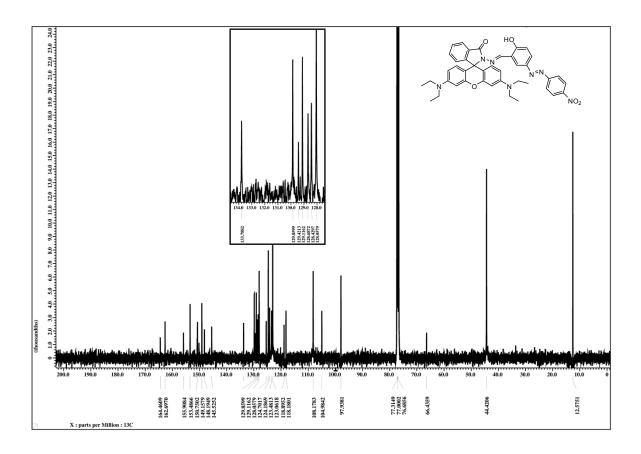


Figure S2: ¹³C NMR spectrum of L in CDCl₃ solution.

3. TOF MS ES+ Mass Spectrum of L:

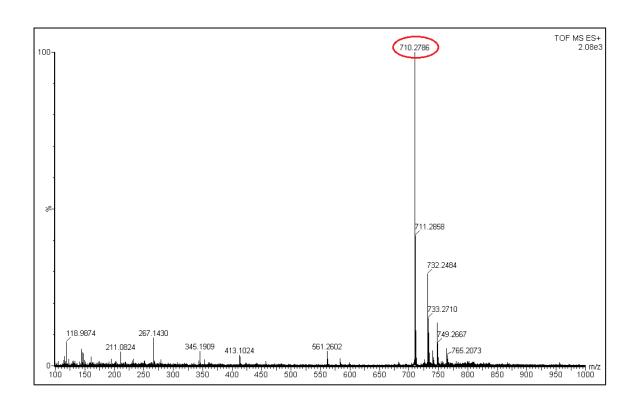


Figure S3: Mass spectrum of L.

4. TOF MS ES+ spectrum of L in the presence PdCl₂:

Figure S4: ESI Mass spectrum of **L**-Pd complex and (bottom left) theoretical simulation of **L**-Pd complex and (right) experimental spectrum of **L**-Pd complex.

5. FTIR spectra for L and L-Pd²⁺:

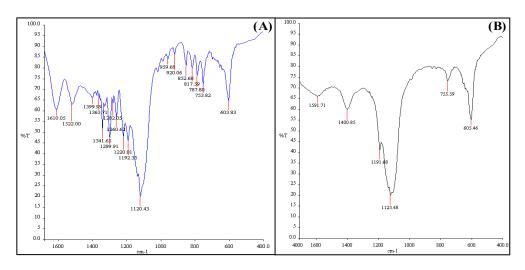
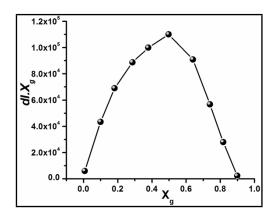



Figure S5. FTIR spectra of both (A) L and (B) L-Pd²⁺.

6. Job's plot for L-Pd²⁺:

Figure S6. Fluorescence Job's plot for L with Pd²⁺ in EtOH–water (1: 1, v/v; 10 mM, HEPES buffer, pH = 7.4, ([H] = [G] = 4×10^{-5} M).

7. Calculations for detection limit:

The detection limit (LOD) of L for Pd^{2+} were determined from the following equation¹: DL = 3Sb1/S, Where Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

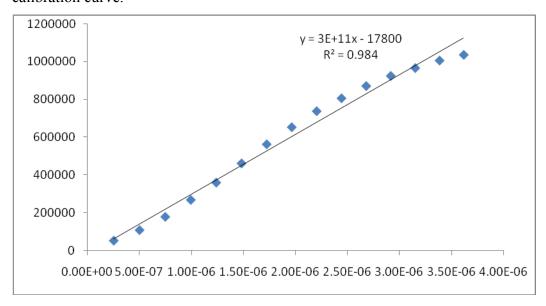
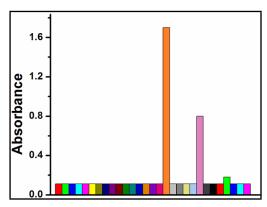
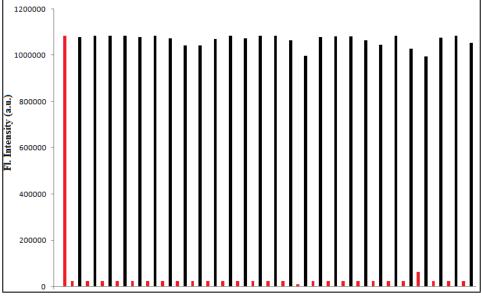
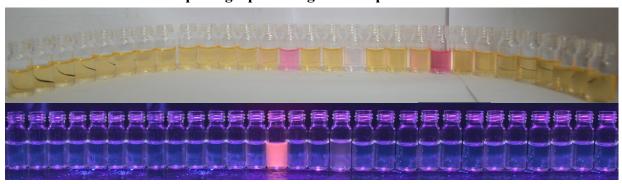



Figure S7: Calibration curve for fluorescence titration of L with Pd^{2+} .

From the graph we get slope = 3×10^{11} , and Sb1 value is 45043.81.


Thus using the formula we get the Detection Limit = $0.45\mu M$ = 4.5×10^{-7} M.

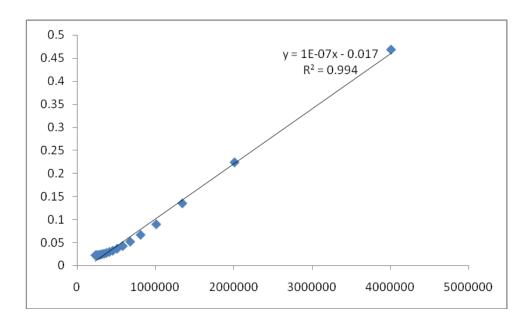
8. UV-vis Bar Diagram of L in presence of various metal ions:


Figure S8. Change in the absorption spectrum of receptor **L** [c = 4×10^{-5} M, EtOH / H₂O = 1 : 1, v/v, 10 mM HEPES buffer, pH = 7.4) with respective metal cations (c = 1×10^{-4} M, left to right-**L**, Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Sr²⁺, Ba²⁺, Zr⁴⁺, Hf⁴⁺, Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Ru³⁺, Pd²⁺, Pt²⁺, Ag⁺, Au³⁺, Sn⁴⁺, Pb²⁺, Pd⁰ and Al³⁺).

9. Competitive experiments of L:

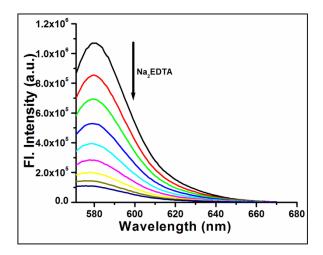
Figure S9. Fluorescence response of L ($c=4 \times 10^{-5}$ M) to 1 eqv. addition of Pd²⁺ ($c=1 \times 10^{-4}$ M) and 10 eqv. of other metal ions ($c=1 \times 10^{-4}$ M) [the red bar portion] and to the mixture of 10 eqv. of other metal ions with 1 eqv. addition of Pd²⁺ [the black bar portion]. [Metal ions from left to right: Pd²⁺, Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Sr²⁺, Ba²⁺, Zr⁴⁺, Hf⁴⁺, Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Ru³⁺, Pt²⁺, Ag⁺, Au³⁺, Sn⁴⁺, Pb²⁺, Pd⁰, and Al³⁺].

10. Visual and fluorescence photographic image of L in presence of different metal ions

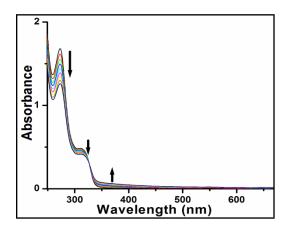

Figure S10. The Visible color (top) and fluorescence changes (bottom) of receptor **L** in EtOH– H_2O solution upon addition of various metal ions. [From left to right: **L** , Li⁺, Na⁺, K⁺, Ca²⁺ , Mg²⁺, Sr²⁺, Ba²⁺, Zr⁴⁺, Hf⁴⁺, Cr³⁺, Mn²⁺, Fe²⁺, Pd²⁺, Fe³⁺, Co²⁺, Sn⁴⁺, Ni²⁺, Zn²⁺, Cu²⁺, Cd²⁺, Hg²⁺, Ru³⁺, Pt²⁺, Ag⁺, Au³⁺, Pb²⁺, Pd⁰, and Al³⁺].

11. Calculations for the Binding Constants Using Spectrophotometric Titration Data:

The association constant and stoichiometry for the formation of the respective complexes were evaluated using the Benesi-Hildebrand (B-H) plot (eq 1).²


$$1/(I - I_0) = 1/K(I_{max} - I_0)[M^{n+}] + 1/(I_{max} - I_0)$$
(1)

where I_0 , I_{max} , and I represent the emission intensity of free L, the maximum emission intensity observed in the presence of added metal ion at 579 nm for Pd^{2+} ($\lambda_{ext} = 561$ nm), and the emission intensity at a certain concentration of the metal ion added, respectively.


Figure S11: Bensei-Hildebrand plot obtained from the Fluorescence titration data of L (4 x 10^{-5} M) with Pd²⁺(1x 10^{-4} M).

12. Reversibility Study:

Figure S12: Change in emission spectra of L-Pd complex in EtOH- H_2O solution (EtOH : H_2O = 1: 1, v/v, 10 mM HEPES buffer, pH = 7.4) upon addition of Na_2EDTA .

13. UV-vis spectra of 1 in presence of Pd²⁺ ions:

Figure S13: UV-Vis spectral changes of **1** (c = 4×10^{-5} M) in EtOH/H₂O (1:1, v/v, 10 mM HEPES buffer, pH 7.4) solutions upon addition of Pd²⁺ ions.

14. DFT study:

The calculation has been carried out at B3LYP with 6-31G(d) basis expect for Pd, LANL2DZ with ECP basis set is used.

Species	E(HOMO)	E(LUMO)	ΔE(Hartree	ΔE(eV)	ΔE(kcal/mol)
L	-0.19782	-0.09829	0.09953	2.708370548	62.45602054
L-Pd ²⁺	-0.28057	-0.22138	0.05919	1.610654604	37.1422873

15. X-ray Crystallography study:

Single crystal suitable for X-ray analysis was performed on Bruker APEX II Duo CCD area-detector diffractometer using Mo K α radiation (λ = 0.71073 Å). Data collection was performed using the *APEX2* software, whereas the cell refinement and data reduction were performed under the *SAINT* software. The crystal structure was solved by direct method and refined against F^2 by full-matrix least-squares refinement using *SHELXTL* package. The non-hydrogen atoms were refined anisotropically, whereby the O-bound and C-bound hydrogen

atoms were located in difference fourier maps (O–H = 0.8999 Å) and positioned geometrically (C–H = 0.93 - 0.97 Å), respectively. One of the methyl groups is disordered over two positions with refined site-occupancies of 0.550(13) and 0.450(13). The same U_{ij} parameters were used for atom pairs C25/C26 and C28/C29. A rotating-group model was applied for the methyl groups. The final refinement converged well. Absorption correction was applied to the final crystal data by using the *SADABS* software. Crystallographic data for **L** has been deposited with the Cambridge Crystallographic Data Center No. CCDC **1013077**.

Table S1: Experimental details

Crystal data			
CCDC number	1013077		
Emperical formula	$C_{41}H_{39}N_7O_5$		
$M_{ m r}$	709.79		
Crystal system, space group	Triclinic, P1		
Temperature (K)	294		
a, b, c (Å)	10.244 (1), 13.8307 (14), 14.5665 (14)		
α, β, γ (°)	72.3415 (18), 70.1280 (18), 75.9246 (18)		
V(Å ³)	1826.7 (3)		
Z	2		
Radiation type	Μο Κα		
μ (mm ⁻¹)	0.09		
Crystal size (mm)	$0.62 \times 0.27 \times 0.11$		
Data collection			
Diffractometer	Bruker SMART APEX II DUO CCD area-detector		
	diffractometer		
Absorption correction	Multi-scan		
	(SADABS; Bruker, 2009)		
T_{\min}, T_{\max}	0.948, 0.991		
No. of measured, independent and	21242, 6834, 4216		
observed $[I > 2\sigma(I)]$ reflections			
R _{int}	0.026		

$(\sin \theta/\lambda)_{\max} (\mathring{A}^{-1})$	0.609		
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.087, 0.291, 1.09		
No. of reflections	6834		
No. of parameters	481		
H-atom treatment	H-atom parameters constrained		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.79, -0.58		

Table S2: Hydrogen-bond geometry (Å, °)

<i>D</i> —H···A	<i>D</i> —Н	\mathbf{H} ··· A	D ···A	<i>D</i> —H⋯A
O3—H1 <i>O</i> 3···N2	0.90	1.80	2.633 (5)	153
C11—H11A····O2i	0.93	2.53	3.434 (5)	163
C21—H21A ···Cg1 ⁱⁱ	0.93	2.28	3.024(5)	137

Symmetry codes: (i) -x+2, -y+2, -z (ii) x, y, z.

References:

- (a) L. Long, D. Zhang, X. Li, J. Zhang, C. Zhang and L. Zhou, *Anal. Chim. Acta*, 2013, 775, 100–105; (b) M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang and D. Zhu, *Org. Lett.*, 2008, 10, 1481-1484. (c) C. Kar, M. D. Adhikari, A. Ramesh and G. Das, *Inorg. Chem.*, 2013, 52, 743–752.
- (a) H. A. Benesi and J. H. Hildebrand, *J. Am. Chem. Soc.*, 1949, 71, 2703–2707; (b)
 C. Yang, L. Liu, T. -W. Mu and Q. -X. Guo, *Anal. Sci.*, 2000, 16, 537–539; (c) Y. Shiraishi, S. Sumiya, Y. Kohno and T. Hirai, *J. Org. Chem.*, 2008, 73, 8571–8574.

^{*} Cg1 is the centroid of O1/C6/C7/C12/C13 ring.