Switching of electrochemical characteristics of redox protein upon specific biomolecular interactions

Man Yi Ho^{†*}, Sarah Goodchild[‡], Pedro Estrela[†]^o, Daping Chu[†], Piero Migliorato[†]

> [†] Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge, CB3 0FA, UK

°Current address: Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK

> [‡]Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK

Supporting Information

Materials and Methods

1 Sample preparation

Cleaning of bulk gold electrode

Gold disk working electrodes with radius 1mm (CH Instrument, Austin, TX, USA) were sonicated for 5 minutes in 3% decon, rinsed with deionised water (DI), followed by electrochemical reductive desorption in 0.5M NaOH from -0.9 to -1.9 V versus Hg/Hg₂SO₄ until no further changes in the voltammogram were observed. The electrodes were then polished for 5 minutes with 0.3µm aluminium oxide powder (Buehler, Lake Bluff, IL, USA) on a polishing pad (Buehler). The residual powders were removed by sonicating in DI water for 5 minutes, polishing on a blank polishing pad, and finally sonicating again in DI water for another 5 minutes. Electrochemical cleaning in 0.5M H₂SO₄ was performed by scanning the potential between -0.05V and +1.1V versus Hg/Hg₂SO₄ for 55 cycles.

Electrode funtionalization

Electrodes were incubated with 20µl of 20µg/ml biotinylated Az for 2 hours, followed by backfilling with 10µl of 100µM thiolated polyethylene glycol (PEG) S(CH2)11(OCH2CH2)3OH.

Specific interaction and control

For specific interaction, the functionalized electrodes were incubated with 20μ I of 20μ M streptavidin in 10mM pH7 phosphate buffer for 1 hour. As a control, electrodes were incubated with 10μ g/ml Ovalbumin specific scFv antibody in PBS for 1 hour (provided by DSTL).

2 AC voltammetry measurement

Measurements were performed in a three-electrode cell, with Hg/Hg_2SO_4 (K_2SO_4 sat.) reference electrode and Pt counter electrode, using an Autolab PGSTAT302 potentiostat. The potential scan ranged from -0.45 V to 0.45V vs Hg/Hg_2SO_4 . The amplitude and frequency of the superimposed rms signal were 10mV and 2Hz, respectively.

3 Electrochemical Impedance Spectroscopy (EIS) measurement

Measurements were performed in a three-electrode cell, with Hg/Hg₂SO₄ (K₂SO₄ sat.) reference electrode and Pt counter electrode, using an Autolab PGSTAT302 potentiostat. The measuring buffer contains 1mM K₄[Fe(CN)₆] + 1mM K₃[Fe(CN)₆] in phosphate buffer pH 7 for a range of ionic strength specified in the experiments. The impedance spectrum was measured from 0.1Hz to 10KHz, with 10mV ac potential superimposed on a dc bias potential equals to the formal potential of the redox couple (-0.21V vs Hg/Hg₂SO₄). The charge transfer resistance, R_{ct}, was determined by fitting the data to a Randles equivalent circuit.

4 Quartz crystal microbalance (QCM) measurement

The substrate of QCM was a gold-coated (mirror finish) 9MHz AT-cut quartz crystals with 2.5mm radius. In first approximation, neglecting any viscosity changes, the resonant frequency of the crystal changes with the mass loading according to the Sauerbrey equation:

$$\Delta \text{mass} = \frac{-\Delta f \times A \times \sqrt{\mu_q \times \rho_q}}{2 \times F_q^2}$$

where **Amass** : Mass change

Δf : Resonant frequency change

- μ_{q} : AT-cut quartz crystal constant (2.947 x 10¹¹ g cm⁻¹ sec⁻²)
- $\rho_{\rm q}$: Quartz crystal density (2.648 g cm⁻³)
- F_q : Reference frequency (9.00 MHz)
- A : Quartz crystal surface area (0.196 cm²)

QCM measurements were performed with QCA922 instrument from Princeton Applied Research. A 2.3ml Teflon cell was used. A magnetic stirrer was positioned in the cell to ensure proper mixing of the injected targets. However this mechanical vibration contributed noise to the measurement. A gold-coated crystal was held vertically in the cell to prevent non-specific deposition of biomolecules by gravitational forces. The quartz crystal was cleaned using acetone vapour and UV/ozone.

Immobilization of biotinylated Azurin

Figure 1 shows the real-time QCM measurement during biotinylated Azurin immobilization. A frequency change of 22Hz was observed, which corresponded to a change of mass of 23.5ng. The molecular weight of biotinylated Az is estimated to be 15.8kDa. yielding a coverage of 4.6 x 10^{12} cm⁻².

Reaction with Streptavidin

Figure 2 shows the QCM measurement for the reaction between biotinylated Az and Streptavidin. A frequency change of 9Hz was observed, which corresponded to a change of mass of 9.61ng. The molecular weight of biotinylated Az is estimated to be 60kDa. yielding a coverage of 4.9 x 10^{11} cm⁻². The theoretical maximum coverage of streptavidin, given its size (5.5nm in diameter), is 4.2×10^{12} cm.

Figure 2 QCM for reaction of biotinylated Az with Streptavidin

- 5 Fitting parameters for several electrodes under different conditions:
 - i) Biotinylated Azurin
 - ii) Biotinylated Azurin after incubation with control
 - iii) Biotinylated Azurin after incubation with streptavidin ($\sigma > -(\sigma_M + \sigma_{PET})$)

Content	Electrode	(σ _M + σ _{PET})/ C m ⁻²	σ/ C m ⁻ 2
Biotinylated Az	1	0.0269	-0.0308
	2	0.0269	-0.0296
	3	0.0268	-0.0294
	4	0.0274	-0.0330
Antibody	5	0.0276	-0.0287
	6	0.0269	-0.0312
Streptavidin	7	0.0271	-0.0252
	8	0.0260	-0.0218

Table 1 Fitting parameters for electrodes under different conditions