Supporting Information (SI)

Sensitive impedimetric biosensor based on duplex–like DNA scaffolds and ordered mesoporous carbon nitride for silver(I) ion detection

Yaoyu Zhou^{ab}, Lin Tang^{*ab,}, Xia Xie^{ab}, Guangming Zeng^{*ab}, Jiajia Wang^{ab}, Yaocheng Deng^{ab},

Guide Yang^{ab}, Chen Zhang^{ab}, Yi Zhang^{ab} and Jun Chen^{ab}

^a College of Environmental Science and Engineering, Hunan University, Changsha 410082, China,

^b Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of

Education, Changsha 410082, China.

Total number of pages of Supporting Information: 8 (including cover page)

Number of Figures in Supporting Information: 4

Number of Tables in Supporting Information: 2

Number of Scheme in Supporting Information: 1

^{*} Corresponding author: Tel.: +86–731–88822778; Fax.: +86–731–88822778

E-mail: tanglin@hnu.edu.cn(L. Tang), zgming@hnu.edu.cn(G.M. Zeng).

Fig. S–1 The preparation of GCE/L–Lys: the GCE was scanned by cyclic voltammetry (CV) in 1.0×10^{-3} M L–Lysine between –2.0 and 2.0 V at 50 mV·s⁻¹.

Fig. S–2 (A) SEM image of MCN. (B) TEM image of MCN.

Fig. S–3 Optimization of experimental conditions: (A) the effect of self–assembly time (capture probe); (B) the effect of hybridization time (S2+S3); (C) the time–course of the Ag⁺ hybridized with C bases; All tested electrodes were fabricated by immobilizing 10 μ L capture probe on electrodes surfaces at 4 °C. Error bars indicate standard deviations from three replicative tests.

Fig. S–4 Five different GCEs constructed by the same procedure on response of biosensor for Ag^+ (10⁻⁸ M). Error bars indicate standard deviations from three replicative tests.

Scheme. S–1 The mechanism of the biosensor including (a) the DNA structure changed in the absence of Ag⁺, (b) Schematic diagram for an electrode/electrolyte interface in a Faradaic biosensor^{1,2}, (c) Randles' equivalent circuit: R_s is the Ohmic resistance of the electrolyte; R_{ct} is the polarization resistance; Z_w is Warburg impedance; and C_{dl} is the double layer capacitance. The measured EIS data can be simulated with this equivalent circuit^{1,2}, (d) Typical Nyquist plot of reactive (Z'') versus resistive (Z') part of the complex impedance^{1,2}.

Table S–1 Equivalent circuit element values for DNA films in absence and presenceof Ag^+ in Fig. 4A

Equivalent circuit element values for DNA films in absence and presence of Ag ^{+ a}							
Equivalent circuit elements							
	$R_{\rm ct}(\Omega)$	$R_{ m S}\left(\Omega ight)$	$C_{dl}(\mu F)$	$W(m\Omega/s^{1/2})$	$\Delta R_{ct}\left(\Omega\right)$		
before hybridization with DNA	101.6(±7)	111.8(±9.3)	11.47(±0.6)	1.456(±0.096)	_		
after hybridization with DNA	3768.0(±94)	106.9(±1.9)	3.592(±0.10)	0.733(±0.051)	_		
1×10 ⁻⁵ M	641.4(±29)	110.9(±2.1)	3.670(±0.18)	1.139(±0.068)	3127.0(±109)		
1×10 ⁻⁶ M	831.1(±35)	114.0(±2.2)	2.972(±0.10)	1.182(±0.083)	2936.9(±114)		
$1 \times 10^{-7} \mathrm{M}$	1080.0(±68)	107.6(±2.8)	3.895(±0.21)	1.016(±0.047)	2688(±92)		
1×10 ⁻⁸ M	1825.0(±52)	112.4(±3.4)	3.263(±0.19)	1.111(±0.059)	1943(±113)		
1×10 ⁻⁹ M	2578.0(±46)	108.7(±2.1)	3.802(±0.22)	0.942(±0.061)	1190(±82)		
$1 \times 10^{-10} \mathrm{M}$	2841.0(±89)	113.9(±3.1)	4.460(±0.25)	0.082(±0.040)	927(±56)		

^a The values in parentheses represent the standard deviations from at least 3 electrode measurements.

Sample number of Xiangjiang River	Added (nM)	Founded ^a (nM)	Recovery (%)
1	0.5	0.529	105.80
2	5	4.760	95.20
3	50	51.43	102.86
4	500	491.96	98.39
5	5000	4948.55	98.97

Table S–2 Determination of Ag⁺ ions added in real samples with the proposed sensor.

^a An average of three replicate measurement.

References

- 1 J. Y. Park and S. M. Park, Sensors, 2009, 9, 9513–9532.
- 2 S. M. Park and J. S. Yoo, Analytical chemistry, 2003, 75, 455 A-461 A.