Electronic Supplementary Information

Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold

Wenming Wu,^{*a,b,c*} Kieu The Loan Trinh^{*a*} and Nae Yoon Lee^{**a*}

^aDepartment of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeonggu, Seongnam, Gyeonggi-do, 461-701, Korea

^bMechatronics department, University of Saarland, Saarbrücken, Germany

^cKIST Europe, GmbH, Campus E7.1, 66123 Saarbrücken, Germany

Related references	Dimension	Material	Advantages	Disadvantages	
This study	3D	Silicone tube	Simple and fast fabricationSmall footprintUse of a single heater	• Height of the microreactor needs to be precisely controlled	
Anal. Biochem. 415, 87 (2011)	3D	PTFE tube	 Construction of an integrated system Low cost Fast reaction (10–60 min) 	Use of three heatersBulkyHigh power consumption	
Analyst 137, 2069 (2012)	3D	PDMS–glass	 Use of a single heater Multiplex PCR Fast reaction (< 25 min) 	 Complicated fabrication Require calculation of the microdevice curvature for optimized annealing temperature 	
Anal. Bioanal. Chem. 400, 2053 (2011)	3D	PDMS-glass	Use of a single heaterFast reaction (15–50 min)	 Complicated fabrication Require a lot of punching for alignment 	
Analyst 137, 983 (2012)	2D	PDMS–glass	 No use of a syringe pump for sample injection Fast reaction (< 30 min) 	 Require two heaters Designing of spiral channel structure to equalize sample residence time 	
Sens. Actuators B 130, 836 (2008)	2D	PMMA-PC	Improved heat toleranceRapid fabricationLow cost	 Require high temperature for bonding PMMA and PC (165°C, 30 min) Require CO₂-laser micromachining for engraving on PMMA Require complicated temperature control 	
J. Micromech. Microeng. 17, 1810 (2007)	2D	PDMS-glass	Fast reaction (8–30 min)Low cost	Complicated fabrication of microheater and microsensor	
Chem. Eng. J. 101, 151 (2004)	2D	PDMS–glass	 Reproducible results Amplification of large size target (1,460 bp) possible 	 Complicated temperature control system needed (six pairs of heaters and sensors) Long reaction time (85 min) 	
Anal. Chem. 81, 302 (2009)	2D	PMMA– PMMA	 Fast reaction (17 min) Use of a single DNA molecule for amplification 	 Complicated design of the microdevice Complicated temperature control system 	
Analyst 136, 2287 (2011)	2D	PDMS–glass	 Simple farbrication Small footprint High reproducibility 	Use of multiple heatersHigh power consumption	

[Table S1] Sor	ne examples o	of previously	developed i	flow-through PC	R microdevices
	-		-	-	