Supplementary Data

Novel pyridinium-based tags: Synthesis and characterization for highly efficient analysis of thiol-containing peptides by mass spectrometry

Xiaoqiang Qiao,*^a Yanjun Yang,^a Shijia Liu,^a Shiheng Chen,^b Xin Wang,^a Guangyue Li,^c Hongyuan Yan,^a and Xun Yang^{*a}

^a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China

^b Food Quality & Safety Center, Nutrition & Health Research Institute, COFCO Corporation, Beijing, 100020, China

^c College of Chemical Engineering, Hebei United University, Tangshan, 063009, China

NI-			No of	Labeling efficiency/%		
No	Position	on Peptide sequence		IMP	IPP	
1	76-88	K.TCVADESHAGCEK.S	2	90.4	90.8	
2	89-100	K.SLHTLFGDELCK.V	1	100	100	
3	106-117	R.ETYGDMADCCEK.Q	2	100	100	
4	118-130	K.QEPERNECFLSHK.D	1	100	66.2	
5	118-138	K.QEPERNECFLSHKDDSPDLPK.L	1	100	100	
6	123-130	R.NECFLSHK.D	1	100	100	
7	123-138	R.NECFLSHKDDSPDLPK.L	1	100	100	
8	139-151	K.LKPDPNTLCDEFK.A	1	100	100	
9	139-155	K.LKPDPNTLCDEFKADEK.K	1	100	100	
10	139-156	K.LKPDPNTLCDEFKADEKK.F	1	100	100	
11	184-197	K.YNGVFQECCQAEDK.G	2		100	
12	198-204	K.GACLLPK.I	1	100	100	
13	223-228	R.CASIQK.F	1	100	100	
14	267-285	K.ECCHGDLLECADDRADLAK.Y	3	100	100	
15	286-297	K.YICDNQDTISSK.L	1	100	100	
16	298-309	K.LKECCDKPLLEK.S	2	86.1	100	
17	300-309	K.ECCDKPLLEK.S	2	100	100	
18	310-318	K.SHCIAEVEK.D	1	100	100	
19	310-340	K.SHCIAEVEKDAIPENLPPLTADFAEDKDVCK.N	2	100		

Table S1. Labeling efficiency of the thiol peptides from BSA derivatized by IMP and IPP.

20	319-340	K.DAIPENLPPLTADFAEDKDVCK.N	1	100	100
21	375-386	K.EYEATLEECCAK.D	2	100	100
22	387-399	K.DDPHACYSTVFDK.L	1	100	100
23	387-401	K.DDPHACYSTVFDKLK.H	1	100	100
24	413-420	K.QNCDQFEK.L	1	100	100
25	456-468	K.VGTRCCTKPESER.M	2		100
26	460-468	R.CCTKPESER.M	2		92.6
27	469-482	R.MPCTEDYLSLILNR.L	1	65.7	100
28	483-489	R.LCVLHEK.T	1	100	100
29	483-495	R.LCVLHEKTPVSEK.V	1	100	100
30	496-507	K.VTKCCTESLVNR.R	2	100	100
31	499-507	K.CCTESLVNR.R	2	87.7	91.9
32	508-523	R.RPCFSALTPDETYVPK.A	1	100	100
33	529-544	K.LFTFHADICTLPDTEK.Q	1	100	
34	581-597	K.CCAADDKEACFAVEGPK.L	3	100	100
35	588-597	K.EACFAVEGPK.L	1	100	100

	Position	Peptide sequence	No of	IAA	IMP	IPP
NO			cysteines			
1	27-37	R.WCTISTHEANK.C	1		\checkmark	\checkmark
2	38-47	K.CASFRENVLR.I	1			\checkmark
3	48-59	R.ILESGPFVSCVK.K	1	\checkmark		\checkmark
4	48-60	R.ILESGPFVSCVKK.T	1	\checkmark	\checkmark	\checkmark
5	60-68	K.KTSHMDCIK.A	1			\checkmark
6	61-68	K.TSHMDCIK.A	1		\checkmark	
7	132-142	R.GKKSCHTGLGR.S	1		\checkmark	\checkmark
8	134-142	K. KSCHTGLGR.S	1			\checkmark
9	134-152	K.KSCHTGLGRSAGWNIPMAK.L	1			\checkmark
10	167-187	R.AAANFFSASCVPCADQSSFPK.L	2	\checkmark		
11	188-195	K.LCQLCAGK.G	1		\checkmark	\checkmark
12	196-216	K.GTDKCACSNHEPYFGYSGAFK.C	2			
13	244-256	R.KNYELLCGDNTRK.S	1			
14	245-255	K.NYELLCGDNTR.K	1		\checkmark	\checkmark
15	245-256	K.NYELLCGDNTRK.S	1		\checkmark	\checkmark
16	256-277	R.KSVDDYQECYLAMVPSHAVVAR.T	1		\checkmark	\checkmark
17	257-277	K. SVDDYQECYLAMVPSHAVVAR.T	1	\checkmark	\checkmark	\checkmark
18	351-365	R.ESKPPDSSKDECMVK.W	1		\checkmark	\checkmark
19	366-374	K.WCAIGHQER.T	1			\checkmark

Table S2. The recognized thiol peptides from α -transferrin respectively derivatized by IAA, IMP, or IPP.

20	366-376	K.WCAIGHQERTK.C	1	\checkmark	
21	377-402	K.CDRWSGFSGGAIECETAENTEECIAK.I	3		
22	380-402	R. WSGFSGGAIECETAENTEECIAK.I	2	 \checkmark	
23	424-435	K.CGLVPVLAENYK.T	1	 \checkmark	\checkmark
24	424-442	K.CGLVPVLAENYKTEGESCK.N	2		
25	494-513	K.INNCKFDEFFSAGCAPGSPR.N	2		
26	499-513	K.FDEFFSAGCAPGSPR.N	1	 \checkmark	\checkmark
27	514-526	R.NSSLCALCIGSEK.G	2		\checkmark
28	514-530	R. NSSLCALCIGSEKGTGK.E	2	\checkmark	\checkmark
29	527-539	K.GTGKECVPNSNER.Y	1	 \checkmark	
30	531-539	K.ECVPNSNER.Y	1	\checkmark	
31	549-560	R.CLVEKGDVAFVK.D	1	\checkmark	\checkmark
32	579-590	K.NLKKENFEVLCK.D	1	 \checkmark	\checkmark
33	582-590	K.KENFEVLCK.D	1	\checkmark	\checkmark
34	583-590	K.ENFEVLCK.D	1	 \checkmark	\checkmark
35	591-607	K.DGTRKPVTDAENCHLAR.G	1	 \checkmark	\checkmark
36	595-607	R.KPVTDAENCHLAR.G	1	 \checkmark	\checkmark
37	618-625	K.DKATCVEK.I	1	\checkmark	
38	620-625	K.ATCVEK.I	1	\checkmark	
39	637-653	K.SVTDCTSNFCLFQSNSK.D	2		
40	663-669	K.CLASIAK.K	1	\checkmark	
41	663-670	K.CLASIAKK.T	1		\checkmark

42	683-694	R.AMTNLRQCSTSK.L	1	\checkmark	\checkmark	
43	695-704	K.LLEACTFHKP.	1	\checkmark		

Figure S1. MALDI-TOF MS spectra of peptides CDPGYIGSR, LEACTFRRP, MECFG, and

ALVCEQEAR respectively derivatized by IPP.

Figure S2. MALDI-TOF MS spectra of peptide CDPGYIGSR derivatized by IMP respectively stored at room temperature for 1 h, 6 h, 24 h, 72 h, and 168 h.

Figure S3. MALDI-TOF MS spectra of peptide CDPGYIGSR derivatized by IPP respectively stored at room temperature for 1 h, 6 h, 24 h, 72 h, and 168 h.

Figure S4. MALDI-TOF MS spectra of equimolar mixture of IAA, IMP, and IPP derivatized peptides CDPGYIGSR (a), LEACTFRRP (b), MECFG (c), and ALVCEQEAR (d).

Figure S5. CID product ion mass spectra of the peptide CDPGYIGSR respectively derivatized by IAA (a), IMP (b), and IPP (c).