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S1. The IR of glucopyranosyl-1,4-dihydropiridine (Glc-DHP).

S2. The 1H NMR of ethyl β-amino acrylate 2 in CDCl3.
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S3. The 1H NMR of glucopyranosyl-1,4-dihydropiridine (Glc-DHP) in CDCl3.

S4. The 13C NMR ethyl β-amino acrylate 2 in CDCl3.
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S5. The 13C NMR of glucopyranosyl-1,4-dihydropiridine (Glc-DHP) in CDCl3.

S6. The HRMS of ethyl β-amino acrylate 2 and glucopyranosyl-1,4-dihydropiridine (Glc-DHP).
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S7. Fluorescence quenching effects of 14 metal ions (Ca2+, Ag+, Pb2+, Co2+, Sb5+, As3+, Al3+, Sn2+, 
Ba2+, Na+, Au+, Hg2+, Cu2+, Ba+) and 10 electron deficient aromatic compounds (TNT, DNT, NBA, 
BA, CBA, 3-NP, 2-NP, 4-NP, DNP, TNP) (100µM) on the fluorophores (1 µM) in aqueous 
solution.

S8. Fluorescence intensity of Glc-DHP 1 µM at λmax = 450 nm in various pHs.



S9. Absorption spectra of TNP in various pHs.
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S11. Absorption spectra of 4NP in various pHs.

S12. Absorption spectra of 3NP in various pHs.



S13. Absorption spectra of 2NP in various pHs.

S14. Calculation of the critical distance (R0) between fluorescent donor (Glc-DHP) and acceptor 

(TNP) when the efficiency of transfer = 50%

According to the Förster theory, the efficiency of FRET between donor and acceptor also 

depends on the distance between the fluorescent donor and the acceptor, which is lower than 8 nm. 

The critical distance (R0) between fluorescent donor (Glc-DHP) and acceptor (TNP) when the 

efficiency of transfer = 50% was estimated by the calculation using the following equation (eq. 

[5]).

        

                                                  [5]𝑅6
0 = 8.79 × 10 ‒ 25𝐾2𝑁 ‒ 4Φ 𝐽

     In eq. [5], K2 is the orientation related to the dipole geometry of the donor and the acceptor and 

K2 = 2/3 for random orientation as in fluid solution; N is the average refracted index of medium in 

the wavelength range where spectral overlap is significant; Ф is the fluorescence quantum yield of 

the donor; J is the effect of the spectral overlap between the emission spectrum of the donor and 

the absorption spectrum of the acceptor, which could be calculated by the eq. [6]:
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     where F (λ) is the corrected fluorescence intensity of the donor in the wavelength range, from λ 

to λ + Δλ; ε(λ) is the extinction coefficient of the acceptor at λ.

     In the present case, N = 1.33, Φ = 0.29 for Glc-DHP, according to eqs. [5]–[6], 

J = 1.3264×10−15 cm3 Lmol−1 and R0 = 2.039 nm could be determined. The critical average distance 

between a donor fluorophore and acceptor when the efficiency of transfer = 50% are 2-8 nm, 

which indicate that the energy transfer from Glc-DHP to TNP occurs with high probability.
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of DNP at pH 3. (B) Stern-Volmer plot in response to DNP at pH 3. 
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S19. (A) Change in fluorescence spectra of Glc-DHP (1 μM) with the addition
of DNP at pH 5. (B) Stern-Volmer plot in response to DNP at pH 5. 
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of TNP at pH 5. (B) Stern-Volmer plot in response to TNP at pH 5. 

S21. (A) Change in fluorescence spectra of Glc-DHP (1 μM) with the addition
of 4NP at pH 8. (B) Stern-Volmer plot in response to 4NP at pH 8. 
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S22. (A) Change in fluorescence spectra of Glc-DHP (1 μM) with the addition
of DNP at pH 8. (B) Stern-Volmer plot in response to DNP at pH 8.

S23. (A) Change in fluorescence spectra of Glc-DHP (1 μM) with the addition
of TNP at pH 8. (B) Stern-Volmer plot in response to TNP at pH 8. 
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S25. Stern-Volmer plot in response to various NPs at pH 5. 

S26. Stern-Volmer plot in response to various NPs at pH 8. 



S27. Stern-Volmer plot in response to various NPs at pH 3, 5, 8. 


