A VERSATILE REVERSED PHASE-STRONG CATION EXCHANGE-REVERSED PHASE (RP-SCX-RP) MULTIDIMENSIONAL LIQUID CHROMATOGRAPHY PLATFORM FOR QUALITATIVE AND QUANTITATIVE SHOTGUN PROTEOMICS

Supplementary information 1

Isolation of chloroplasts and the protein extraction procedure

In the extraction of chloroplast proteins from plant tissues, ground tissue under liquid nitrogen was vortexed with 10% trichloroacetic acid in acetone. The mixture was centrifuged at $16000 \times g$ for 5 minutes at 4°C. The pellet from previous step was then vortexed with 0.1 M NH₄OAc in 80% methanol and centrifuged at $16000 \times g$ for 5 min at 4°C. The supernatant was removed and SDT (4% SDS, 50 mM DTT and 0.1 M Tris-Cl pH 8.0) was added to the pellet. The mixture was homogenized and heated at 95°C for 10 minutes. Debris was removed by centrifugation at 16000 × g for 5 minutes at 4°C twice and the supernatant containing the protein was collected. Proteins were purified by acetone precipitation and dissolve in urea buffer (6 M urea in 200 mM MOPS/ 4 mM CaCl₂ pH 8.0).

Supplementary information 2

Online 2D RP–RP and 3D RP–SCX–RP analysis with the tailor-made platform

The tailor-made platform consisting of 2 six-port and 1 four-port valves was assembled as shown as Figure S-1A. Peptides were dissolved in or diluted with buffer A and then loaded onto the first dimension RP column at 1 µL/min. The peptides were separated through pH 10 RP with a linear gradient from 0 to 45% buffer B using pH 10 RP buffers A and B at a flow rate of 1 µL/min. We employed eight fractionation steps for the pH 10 RP column in the first dimension. Every fraction of eluate from pH 10 RP was collected in 5 min intervals using a 30 µL mixing loop prefilled with buffer C. (Figure S-1A, Step 1) The stored fraction was then transferred to the SCX column with a stream of 100% buffer C at 3 μ L/min for 25 min. (Figure S-1A, Step 2) The peptides on the SCX column were eluted sequentially with three plugs of salt solution of increasing strength (20 mM, 100 mM and 1000 mM) in the second dimension. Meanwhile, the LC flow for the pH 10 RP was bypassed. Finally, peptides were eluted onto the RP trap column through an injection of ammonium buffer with 100% buffer C at 3 μ L/min by the autosampler; the system was further equilibrated for 20 min. The peptides were then separated in the pH 2 RP column using a linear gradient; the gradient was varied according to the organic content of the mobile phase that eluted from the pH 10 RP (see Table S-1 and Table S-2). The gradient length of pH 2 RP (last dimension) for the 2D RP-RP and 3D RP-SCX-RP systems were 180 and 90 min, respectively; the total mass

spectrometric acquisition time per analysis using either the 2D RP–RP or 3D RP–SCX–RP system was approximately 36 h.

Figure S-1 (A) Schematic representation and operation of the tailor-made platform. **Step 1**: pH 10 RP fractionation; **Step 2**: online solvent mixing followed by SCX trapping of fractionated peptides; **Step 3**: SCX peptide sub-fractionation and pH 2 RP gradient separation. (B) Proportional Venn diagrams obtained from overlapping the proteins and peptides identified in the analysis of yeast tryptic digests with the 2D RP–RP implemented on the tailor-made and the commercial LC integrated platforms.

В

Figure S-2. The detailed stepwise procedure, valve positions and division of labor for the individual trap columns during the operation of (A) 2D RP–RP, (B) 3D RP–SCX–RP with 2 SCX sub-fractions and (C) 3D RP–SCX–RP with 3 SCX sub-fractions.

٨			SCX-RP trap column 1	SCX-RP trap column 2	V1	V2
A		Step 1 Fractionate peptides from pH 10 RP				
		Step 2	Transfer peptides to SCX column	Idle	1-10	1-2
		Step 3	Inject salt for peptide release]
until h was	Step 4 Step 5		Fractionate peptides from pH 10 RP	1-2		
		Peptide separated and eluted out of pH 2 RP	Transfer peptides to SCX column		1-10	
/cle ctior yze		Step 6		Inject salt for peptide release]
at cy frac	Step 1 Fractionate peptides from pH 10 RP			1-2	1-2	
ery (ery		Step 2	Transfer peptides to SCX column	Peptide separated and		
₩ S		Step 3	Inject salt for peptide release		1-2	

R			SCX-RP trap column 1	SCX-RP trap column 2	V1	V2
		Step 1	Fractionate peptides from pH 10 RP			
		Step 2	Transfer peptides to SCX column	ldle	1-10	1-2
		Step 3	Inject salt for SCX fractionation]
\rightarrow		Step 4		Fractionate peptides from pH 10 RP	1-2	
until was		Step 5	Peptide separated and eluted out of pH 2 RP	Transfer peptides to SCX column	1-10	1-10
		Step 6		Inject salt for SCX fractionation		
/cle :tior /zec		Step 3	Inject salt for SCX fractionation	Peptide analyzed by pH 2 gradient pump	1-2	1-2
at cy frac naly		Step 6	Peptide analyzed by pH 2 gradient pump	Inject salt for SCX fractionation	1-2	1-10
Repea every a		Step 1	Fractionate peptides from pH 10 RP		1-2	
		Step 2	Transfer peptides to SCX column	Peptide separated and eluted out of pH 2 RP	1-10	1-2
		Step 3	Inject salt for SCX fractionation		1-2	

^			SCX-RP trap column 1	SCX-RP trap column 2	V1	V2
C		Step 1	Fractionate peptides from pH 10 RP		1-2	
		Step 2	Transfer peptides to SCX column	Idle	1-10	1-2
		Step 3	Inject salt for SCX fractionation		1-2	
		Step 4		Fractionate peptides from pH 10 RP	1-2	
until was		Step 5	Peptide separated and eluted out of pH 2 RP	Transfer peptides to SCX column	1-10	1-10
		Step 6		Inject salt for SCX fractionation		
		Step 3	Inject salt for SCX fractionation	Peptide analyzed by pH 2 gradient pump	1-2	1-2
ycle tior/ zeo		Step 6	Peptide analyzed by pH 2 gradient pump	Inject salt for SCX fractionation	1-2	1-10
at cy frac		Step 3	Inject salt for SCX fractionation	Peptide analyzed by pH 2 gradient pump	1-2	1-2
ery a		Step 6	Peptide analyzed by pH 2 gradient pump	Inject salt for SCX fractionation	1-2	1-10
₽ A B		Step 1	Fractionate peptides from pH 10 RP		1-2	
		Step 2	Transfer peptides to SCX column	Peptide separated and eluted out of pH 2 RP	1-10	1-2
		Step 3	Inject salt for SCX fractionation		1-2	

Figure S-3. Schematic diagram showing the workflow of the first two dimensions of 3D RP–SCX– RP in the dual trap configuration with (A) 12 pH 10 RP fractions and 2 SCX sub-fractions or (B) 8 pH 10 RP fractions and 3 SCX sub-fractions.

Figure S-5. Peptide spillover in SCX sub-fractions across the RP fractions in the analyses of mouse embryonic fibroblasts (STO) tryptic peptides with 3D RP–SCX–RP. The table below summarizes the percentage overlap of the peptides observed in the three SCX sub-fractions across the various RP fractions.

RP fraction	% of peptide overlapping across 3 SCX sub-fractions
RP1	7.6%
RP2	7.4%
RP3	8.0%
RP4	9.2%
RP5	8.7%
RP6	9.3%
RP7	9.0%
RP8	5.9%
Average	8.1%

Figure S-6. Mass spectra and chromatograms obtained during the elution of HFNAPSHIR²⁺. Overlaid TOF survey scan during the elution of HFNAPSHIR²⁺ from the (A) 3D RP–SCX–RP and (B) 2D RP–RP platforms. The red arrow indicates the position of the peptide peak of HFNAPSHIR²⁺. The isotopic distribution of the peptide in the mass spectra after (C) 3D RP–SCX–RP and (D) 2D RP–RP separation. The extracted ion chromatogram of the peptide HFNAPSHIR²⁺ after (E) 3D RP–SCX–RP and (F) 2D RP–RP separation. The MS/MS spectra of the peptide HFNAPSHIR²⁺ acquired after (G) 3D RP–SCX–RP and (H) 2D RP–RP separation.

Figure S-7. Mass spectra and chromatograms obtained during the elution of TAVSHRPGAFK²⁺. Overlaid TOF survey scan during the elution of TAVSHRPGAFK²⁺ from the (A) 3D RP–SCX–RP and (B) 2D RP–RP platforms. The red arrow indicates the position of the peptide peak of TAVSHRPGAFK²⁺. The isotopic distribution of the peptide in the mass spectra after (C) 3D RP–SCX–RP and (D) 2D RP–RP separation. The extracted ion chromatogram of the peptide TAVSHRPGAFK ²⁺ after (E) 3D RP–SCX–RP and (F) 2D RP–RP separation. The MS/MS spectra of the peptide TAVSHRPGAFK ²⁺ acquired after (G) 3D RP–SCX–RP separation.

Figure S-8. Plot of pI with respect to molecular weight for the identified PC12 proteins, highlighting the unbiased protein profiling using the 3D RP–SCX–RP platform. Expected molecular weights and values of pI were determined using the Protein Digestion Simulator software at the OMICS.PNL.GOV website

(<u>http://omics.pnl.gov/software/ProteinDigestionSimulator.php</u>). Proteins highlighted in red represent those at the extremes in terms of either p*I* and/or molecular weight for the sample population.

Table S-1. The division of gradients in the first dimension pH 10 RP for the 8, 12 and 16 fraction strategies used in 2D RP–RP and 3D RP–SCX–RP experiments. *The exact conditions of the gradient used in fractions RP 7-10 in the 16 fraction strategy were 16-17.5, 17.5-19, 19-20.5, 20.5-22 %B, respectively.

8 fraction	12 fraction	16 fraction	pH 10 RP %B
		RP1	0-10
		RP2	10-12
002	002	RP3	12-13
RF2	RF2	RP4	13-14
002	002	RP5	14-15
RP3	RP3	RP6	15-16
		RP7*	16-17
RP4			17-18
	PD5	RP8*	18-19
	KF3	RP9*	19-20
RP5	PD6		20-21
	INF 0	RP10*	21-22
PD6	RP7	RP11	22-24
KF0	RP8	RP12	24-26
	RP9	RP13	26-28
	RP10	RP14	28-30
	RP11	RP15	30-38
RF0	RP12	RP16	38-46

Table S-2 The final dimension pH 2 RP gradient conditions used in the (A) experiments with 8 pH 10 RP fraction strategy and 90 min gradient for the 2D RP–RP and 3D RP–SCX–RP platforms, (B) experiments with 12 pH 10 RP fraction strategy and 60, 90 or 180 min gradient for the 2D RP–RP or 3D RP–SCX–RP platforms and (C) experiments with 16 pH 10 RP fraction strategy and 45 min gradient for the 2D RP–RP.

Δ								
~	pH 2 RP %D for the accumulative time point							
90 min grad	0 min	1 min	91 min	96 min	106 min	111 min	116 min	140 min
RP1	0	8	20	20	50	50	0	0
RP2	0	8	25	25	50	50	0	0
RP3	0	10	25	25	50	50	0	0
RP4	0	10	28	28	50	50	0	0
RP5	0	12	30	30	50	50	0	0
RP6	0	12	32	32	50	50	0	0
RP7	0	15	35	35	50	50	0	0
RP8	0	20	40	40	80	80	0	0

В

			pH 2 RP %	6D for the	accumula	tive time	point	
60 min grad	0 min	1 min	61 min	66 min	76 min	81 min	86 min	110 min
90 min grad	0 min	1 min	91 min	96 min	106 min	111 min	116 min	140 min
180 min grad	0 min	1 min	181 min	186 min	196 min	201 min	206 min	230 min
RP1	0	8	20	20	50	50	0	0
RP2	0	8	20	20	50	50	0	0
RP3	0	10	22	22	50	50	0	0
RP4	0	10	25	25	50	50	0	0
RP5	0	12	25	25	50	50	0	0
RP6	0	12	28	28	50	50	0	0
RP7	0	15	30	30	50	50	0	0
RP8	0	15	32	32	50	50	0	0
RP9	0	15	35	35	50	50	0	0
RP10	0	18	35	35	50	50	0	0
RP11	0	20	35	35	50	50	0	0
RP12	0	20	35	35	80	80	0	0

С

	pH 2 RP %D for the accumulative time point									
45 min grad	0 min	1 min	46 min	51 min	61 min	66 min	71 min	95 min		
RP1 – 2	0	8	20	20	50	50	0	0		
RP3 – 4	0	8	25	25	50	50	0	0		
RP5 – 6	0	10	25	25	50	50	0	0		
RP7 – 8	0	10	28	28	50	50	0	0		
RP9 – 10	0	12	30	30	50	50	0	0		
RP11 - 12	0	12	32	32	50	50	0	0		
RP13 – 14	0	15	35	35	50	50	0	0		
RP15 – 16	0	20	40	40	80	80	0	0		

Table S-3. Systematic name and name description of the 16 yeast proteins identified using 3D RP– SCX–RP, whose abundance is lower than 50 copies per cell as reported by Ghaemmaghami *et al.*¹

Systematic Name	Name Description
YBR006W	Succinate-semialdehyde dehydrogenase [NADP(+)]
YCL034W	LAS seventeen-binding protein 5
YCL043C	Protein disulfide-isomerase
YDL204W	Reticulon-like protein 2
YDR150W	Nuclear migration protein NUM1
YGR152C	Ras-related protein RSR1
YJL153C	Inositol-3-phosphate synthase
YJL167W	Farnesyl pyrophosphate synthase
YKL032C	Intrastrand cross-link recognition protein
YKL208W	Cytochrome b termination protein 1
YLR100W	3-keto-steroid reductase
YNL132W	UPF0202 protein KRE33
YOR120W	Glycerol 2-dehydrogenase (NADP(+))
YPR020W	ATP synthase subunit g, mitochondrial
YPR060C	Chorismate mutase
YPR148C	Uncharacterized protein YPR148C

Sequence	pH 2 HI value	Systematic Name	Name Description	Remarksª
HLIDS <u>VKL</u>	10.18	YAL054C	Acetyl-coenzyme A synthetase 1	Peroxisomal targeting signal ²
SV <u>DV</u> NNIQK	14.23	YKR080W	NAD(+) Methylenetetrahydrofolate dehydrogenase	NAD binding ³
<u>SD</u> LAHLR	14.55	YER031C	GTP-binding protein YPT31/YPT8	GTP binding ^{4, 5}
VVSTGTSNTATAGAVR	15.53	YJR144W	Mitochondrial genome maintenance protein MGM101	Mitochondrial targeting signal ⁶⁻⁸
<u>FTKPTPVQ</u> K	15.59	YOR204W	ATP-dependent RNA helicase DED1	Q motif, adenine recognition and ATPase activity $^{9,\ 10}$
<u>WAQDQVTK</u>	16.23	YDR129C	Fimbrin	Actin binding site 3-2 ¹¹
<u>T</u> VISQSLSK	17.99	YDL185W	V-type proton ATPase catalytic subunit A	ATP binding ¹²
<u>K</u> GETLQDTIR	18.12	YJL130C	Carbamoylphosphate synthetase-aspartate transcarbamylase	Aspartate transcarbamylase domain catalytic site ^{13, 14}

Table S-4. Functional significance of the unique yeast hydrophilic peptides identified using 3D RP–SCX–RP.

^a denotes functional significance of the bolded and underlined residues in the identified peptides. The representative peptides are listed in

descending order according to their predicted pH 2 hydrophobicity index values.

References

- 1. S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. O'Shea and J. S. Weissman, Global analysis of protein expression in yeast, *Nature*, 2003, **425**, 737-741.
- 2. C. De Virgilio, N. Bürckert, G. Barth, J.-M. Neuhaus, T. Boller and A. Wiemken, Cloning and disruption of a gene required for growth on acetate but not on ethanol: The acetyl-coenzyme a synthetase gene of Saccharmoyces cerevisiae, *Yeast*, 1992, **8**, 1043-1051.
- 3. A. F. Monzingo, A. Breksa, S. Ernst, D. R. Appling and J. D. Robertus, The X-ray structure of the NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Saccharomyces cerevisiae, *Protein Sci.*, 2000, **9**, 1374-1381.
- 4. A. Ignatev, S. Kravchenko, A. Rak, R. S. Goody and O. Pylypenko, A Structural Model of the GDP Dissociation Inhibitor Rab Membrane Extraction Mechanism, *J. Biol. Chem.*, 2008, **283**, 18377-18384.
- 5. E. Will, Š. Albert and D. Gallwitz, in *Methods Enzymol.*, ed. C. J. D. A. H. W.E. Balch, Academic Press, 2001, vol. 329, pp. 50-58.
- 6. X. Zuo, D. Xue, N. Li and G. D. Clark-Walker, A functional core of the mitochondrial genome maintenance protein Mgm101p in Saccharomyces cerevisiae determined with a temperature-conditional allele, *FEMS Yeast Res.*, 2007, 7, 131-140.
- 7. D. C. Hayward, Z. Dosztányi and G. D. Clark-Walker, The N-Terminal Intrinsically Disordered Domain of Mgm101p Is Localized to the Mitochondrial Nucleoid, *PloS one*, 2013, **8**, e56465.
- 8. M. G. Claros and P. Vincens, Computational Method to Predict Mitochondrially Imported Proteins and their Targeting Sequences, *Eur. J. Biochem.*, 1996, **241**, 779-786.
- 9. O. Cordin, N. K. Tanner, M. Doère, P. Linder and J. Banroques, The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity, *EMBO J.*, 2004, **23**, 2478-2487.
- N. K. Tanner, O. Cordin, J. Banroques, M. Doère and P. Linder, The Q Motif: A Newly Identified Motif in DEAD Box Helicases May Regulate ATP Binding and Hydrolysis, *Mol. Cell*, 2003, 11, 127-138.
- 11. M. G. Klein, W. Shi, U. Ramagopal, Y. Tseng, D. Wirtz, D. R. Kovar, C. J. Staiger and S. C. Almo, Structure of the Actin Crosslinking Core of Fimbrin, *Structure*, 2004, **12**, 999-1013.
- 12. Q. Liu, X.-H. Leng, P. R. Newman, E. Vasilyeva, P. M. Kane and M. Forgac, Site-directed Mutagenesis of the Yeast V-ATPase A Subunit, *J. Biol. Chem.*, 1997, **272**, 11750-11756.
- 13. M. Nagy, M. Le Gouar, S. Potier, J. L. Souciet and G. Hervé, The primary structure of the aspartate transcarbamylase region of the URA2 gene product in Saccharomyces cerevisiae. Features involved in activity and nuclear localization, *J. Biol. Chem.*, 1989, **264**, 8366-8374.
- 14. K. L. Krause, K. W. Volz and W. N. Lipscomb, 2.5 Å structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-l-aspartate, *J. Mol. Biol.*, 1987, **193**, 527-553.