## Supporting Information

## **Enzymatic-Reaction Induced Production of Polydopamine Nanoparticles for Sensitive and Visual Sensing of Urea**

Nan Li, <sup>a</sup> Hai-Bo Wang, <sup>a</sup> Larissa Thia, <sup>a,b</sup> Jing-Yuan Wang, <sup>b</sup> Xin Wang<sup>\*a</sup>

<sup>a</sup> School of chemical and Biomedical Engineering, Nanyang Technological University,

62 Nanyang Drive, 637459, Singapore.

<sup>b</sup> Nanyang Environment & Water Research Institute, Nanyang Technological

University, 1 Cleantech Loop, #06-08 CleanTech One, 637141, Singapore

\* Corresponding author. Tel: +65 6316 8866. Fax: +65 67947553. E-mail: WangXin@ntu.edu.sg

## **Figures and Tables**



**Figure S1** The pH change of urease-catalyzed hydrolysis of urea in Di-water with different concentration of urea from 0.1 to 7.3 mM at a fixed urease concentration of 0.3 mg mL<sup>-1</sup>. Inset: The linear increase of pH in term of urea concentration.



Figure S2 The proposed pathway for DA polymerization induced by urease/urea enzymatic reaction.

The urease catalytic-reaction triggered generation of PDA CNPs may occur in the following manner: (i) oxidation of the catechol group of dopamine into quinone; (ii) fast reaction of semi-quinone to dopaminequinone (DAQ); (iii) the intramolecular cyclization of DAQ leading to the more readily oxidizable dopaminochrome (DAC); (iv) isomerization of DAC to yield 5, 6 - dihydroxyindole for further polymerization and the self-assembly of small oligomers to PDA CPNs.



Figure S3 FTIR spectra (KBr) of DA (black, top) and PDA (red, bottom).

The large, broad band from  $3200 - 3500 \text{ cm}^{-1}$  is attributed to the stretching vibrations (O–H and N–H) of the carboxylic acid, phenolic and aromatic amino functions, as well as hydroxyl structures and water.<sup>1</sup>

| Method      | Principle                                                                           | Linear<br>range (M)                              | Detection<br>limit (µM) | Comments                                                            | Reference                                                 |
|-------------|-------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|
| Colorimetry | PDAB as<br>chromogenic<br>reagent                                                   | $1.7 - 5 \times 10^{-4}$                         | _                       | low cost but low<br>sensitivity,                                    | Chin. J. Anal.<br>Lab 2009, 313-<br>315                   |
| IUE         | Immobilization of<br>urease in PPy film<br>for amperometric<br>sensor               | 1 – 3 × 10 <sup>-4</sup>                         | _                       | responded rapidly,<br>require of robust<br>enzyme entrapment        | Reactive<br>Functional<br>Polymers,<br>2012, 148-152.     |
| ISE         | Cover ITO electrode<br>by NH4 <sup>+</sup> selective<br>membrane                    | $1.3 \times 10^{-6}$<br>to $3 \times 10^{-2}$    | _                       | good voltage<br>response and<br>complex<br>fabrication              | Sensors and<br>Actuators B,<br>2008, 359-366              |
| IC          | Combination of<br>immobilized urease<br>reaction with IC<br>analysis                | $1.3 \times 10^{-5}$<br>to $4.17 \times 10^{-4}$ | 3.3                     | good selectivity,<br>stability, but low<br>sensitivity              | Analytical<br>Science, 2010,<br>847-851                   |
| FLA         | Application of<br>urease column for<br>fluorimetric FIA                             | $1.0 \times 10^{-6}$<br>to $1.0 \times 10^{-4}$  | _                       | automatic and<br>convenient, but<br>complicated                     | Talanta, 2004,<br>1278-1282                               |
| PL          | Detection of PL<br>intensity of<br>CdSe/ZnS QD                                      | $1.0 \times 10^{-5}$<br>to 0.1                   | 10                      | good sensitivity,<br>hazardous indicator                            | Biosensors and<br>Bioelectronics,<br>2007, 1835-<br>1838  |
| RS          | Enhancement of RS<br>intensity of NH <sub>4</sub> -<br>TPB by urea<br>decomposition | $1.25 \times 10^{-7}$<br>to $1.5 \times 10^{-5}$ | 0.058                   | good selectivity<br>and sensitivity                                 | Bioprocess<br>Biosystems<br>Engineering,<br>2011, 639-645 |
| PDA         | DA polymerization<br>induced by urease<br>catalyzed urea<br>hydrolysis              | $1.0 \times 10^{-7}$<br>to $1.0 \times 10^{-3}$  | 0.1                     | Sensitivity,<br>easy visualization,<br>and no sensor<br>fabrication | This assay                                                |

**Table S1** Comparison of performance of different methods (the data are taken fromthe previous reports).

*PDAB p*-dimethylaminobenzaldehyde, *IUE* immobilized urease electrode, *PPy* Polypyrrole, *ISE* ion selective electrode, *ITO* indium tin oxide, *IC* ion chromatograph, *FIA* flow-injection analysis, *PL* photoluminescence, *QD* quantum dots, *RS* resonance scattering, *TPB* tetraphenyl boron, *PDA* DA polymerization.

(1) Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Langmuir 2012, 28, 6428-6435.