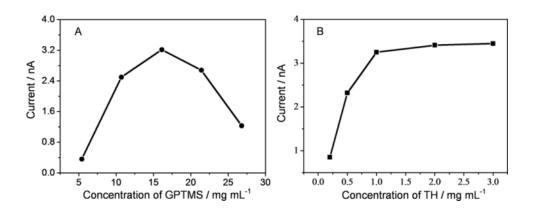
Supporting Information


A facile and durable non-enzymatic electrochemical sensor for monitoring of cerebral H₂O₂ based on one-step fabrication of hydrogel

Zhen Wang[†], Limin Zhang[‡], and Yang Tian^{†‡}

[†]Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China
[‡]Department of chemistry, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China.
E-mail: ytian@chem.ecnu.edu.cn; Fax:+86 21 62237105.

- 1. Optimization of GPTMS and TH concentrations
- 2. Comparison of analytical performance of the present H₂O₂ sensor with other sensors reported in literatures

1. Optimization of GPTMS and TH concentrations

Fig. S1. Relationship between concentrations of GPTMS (A) and TH (B) on the peak currents of the CS/GPTMS/TH electrode toward 5.0×10^{-5} M H₂O₂ in 0.1 M PBS (pH 7.0).

In our present work, we developed a facile method for H_2O_2 detection using CS hydrogel as a matrix to immobilize the specific recognition – TH via one-step electrodeposition. The concentrations of GPTMS and TH were optimized and summarized in Fig. S1. As shown in Fig. S1A, the catalytic peak current of CS/GPTMS/TH electrode toward H_2O_2 increased with the increasing concentration of GPTMS up to 16.0 mg mL⁻¹. Further increasing amount of GPTMS (>16.0 mg mL⁻¹) caused the dropping peak current. Thus, the concentration of GPTMS was optimized to 16.0 mg mL⁻¹ for then studying the effect of TH concentration. From Fig. R1B, it can be seen that the current response of CS/GPTMS/TH toward H_2O_2 gradually increased with the increasing concentration of TH and a maximum of current was obtained at TH concentration of 1 mg mL⁻¹. Therefore, 16.0 mg mL⁻¹ GPTMS and 1 mg mL⁻¹ TH was finally selected to construct the optimized CS/GPTMS/TH electrode.

2. Comparison of analytical performance of the present H₂O₂ sensor with other sensors reported in literatures

	Response time	Linear range	Detection limit	
Sensor	(s)	(µM)	(µM)	References
GCE/CS/GPTMS/TH	7	5-690	1.0	the present work
GCE/SA-MWCNTs/Hb	10	40-200	16.4	S1
Au/CS/AuNPs/HRP	-	8.0-120	2.4	S2
CPE/HRP/Si-Sol-gel/CS	10	250-3400	3.0	S3
GCE/PPY/NiHCF	-	100-900	100	S4
Au/HRP-ZrO ₂	10	20-9450	2.0	S5
GCE/CMC-TiO ₂ -NTs/Hb	10	4-64	4.6	S6
Au/MH/GelB/HHC/CCP	-	0-300	10	S7

Table S1. Comparison of analytical performance of the present H_2O_2 sensor with that of other sensors reported in literatures.

References

S1 H. Zhao, W. Zheng, Z. Meng, H. Zhou, X. Xu, Z. Li, Y. Zheng, Biosens. Bioelectron., 2009, 24, 2352-2357.

- S2 X. Luo, J. Xu, Q. Zhang, G. Yang, H. Chen, Biosens. Bioelectron., 2005, 21, 190-196.
- S3 Y. Miao, S.N. Tan, Anal. Chim. Acta, 2001, 437, 87-93.
- S4 P. Fiorito, S. Cordoba de Torresi, J. Electroanal. Chem., 2005, 581, 31-37.
- S5 Z. Tong, R. Yuan, Y. Chai, Y. Xie, S. Chen, J. Biotechnol., 2007, 128, 567-575.
- S6 W. Zheng, Y. Zheng, K. Jin, N. Wang, Talanta, 2008, 74, 1414-1419.
- S7 K. Wael, Q. Bashir, S. Vlierberghe, P. Dubruel, H. Heering, A. Adriaens, Bioelectrochemistry, 2010, 83, 15-18.