Table S1 Determination of FA in a kind of commercial FA tablet using HMSM-CTAB-supported organogel electrode and DPSV technique by the standard addition method (n=6).

Background value/ µM/L	Addition/ µM/L	Measured value/ µM/L	Recovery / %	Average recovery ± SD /%	RSD / % (n=6)
1.79	18	18.37	92.1	92.4 ± 1.40	1.52
		18.58	93.3		
		18.49	92.8		
		18.71	94.0		
		17.98	89.9		
		18.42	92.4		

Figure captions:

Fig. S1 Scheme of the homemade four-electrode electrochemical cell.

Fig. S2 DPVs representing the transfer of 1 mM FA⁻ at the HMSM-supported W/DCH interface at pH 7.2 (purple trace), pH 8.4 (red trace), pH 9.6 (green trace), and pH 10.8 (blue trace).

Fig. S3 SEM images of the surface of PET-templated HMSM after the experiment conducted under the condition of pH~11.0.

Fig. S4 CVs obtained at the W/DCH interface supported by (A) HMSM and (B) HMSM-CTAB in the absence of FA⁻ (solid line) and presence of 1 mM FA⁻ at different scan rates 5, 10, 15, 25, 50, and 75 mV s⁻¹ (from inner CVs to outer CVs); The insets in (C) and (D) are the corresponding plots of peak current for FA⁻ from W to DCH vs. $v^{1/2}$.

Fig. S5 Continuous CVs corresponding to the IT of 1 mM FA⁻ at the HMSM-CTABsupported W/DCH interface within ten hours at scan rate (v): 5 mV s⁻¹.

Fig. S6 CVs of 4 μ M FA⁻ across the HMSM-CTAB-supported water/organogel interface at increasing scan rates of 5, 10, 15, 20, 25 and 30 mV s⁻¹ (from inner CVs to outer CVs). CVs obtained at water/organogel interfaces in the absence of FA⁻ at scan rate of 5 mV s⁻¹ (solid line). The inset is the corresponding plots of peak current for FA⁻ from organogel to water vs. $v^{1/2}$.

Fig. S7 Influence of the preconcentration time on the DPSV of 4μ M FA⁻ at the HMSM-CTAB-supported water/organogel interface: DPSV of 0, 10, 30, 60, 90, and 150s preconcentration times (from bottom to top). Inset: relationship between peak current and preconcentration time.

Fig. S8 DPSV of FA⁻ at the HMSM-supported water/organogel interface: DPSV response of 1, 5, 9, 18, and 24 μ M FA⁻ (from bottom to top). Inset: calibration curve of peak current vs. concentration of FA.

Fig. S9 CVs obtained at the water/organogel interface in the presence of 4 μ M FA⁻ by using four different HMSM-CTAB-supported organogel electrodes at scan rate (v): 5 mV s⁻¹.

Fig. S10 Calibration curve for FA⁻ transfer at the water/organogel meso-interface in the presence of SCN⁻ and ClO_4^- .

Fig. S11 DPSV curve of prepared sample solution of FA under physiological conditions obtained by using HMSM-CTAB-supported organogel electrode for the determination of FA in a kind of commercial FA tablet.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig. S8

Fig. S9

Fig. S10

Fig. S11