Supporting information

Nanorod-constructed porous Co₃O₄ nanowires: Highly sensitive sensor for detection of hydrazine

Jie Zhang, Wenbin Gao, Meiling Dou*, Feng Wang*, Jingjun Liu, Zhilin Li, and Jing Ji

Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.

Fax: 86-10-64411996; Tel: 86-10-64411996; E-mail: wangf@mail.buct.edu.cn; douml@mail.buct.edu.cn;

Fig. S1 shows the typical first and second CVs in 0.1 M NaOH with different hydrazine concentrations at 20 mV s⁻¹. When hydrazine was added to the electrolyte, the response current changed. It is observed that the anodic peak current increased with more concentrated hydrazine, especially for the CoOOH \rightarrow CoO₂ process, while the cathodic current of CoO₂ \rightarrow CoOOH decreased. This phenomenon is ascribed to the chemical reaction of hydrazine with CoO₂, which generates CoOOH (Co(III)) and N₂. Such process proves an Electrochemical–Chemical (EC) mechanism. The hydrazine detection by the Co₃O₄ NWs electrode can therefore be illustrated as shown in Fig. S2.

Fig. S1 The first (A) and second (B) CVs of Co₃O₄ NWs in 0.1 M NaOH with different hydrazine concentrations at 20 mV s⁻¹.

Fig. S2 The scheme of the principle of Co₃O₄ NWs for hydrazine detection

Fig. S3 shows the XRD pattern of Co_3O_4 NPs. All the diffractions of Co_3O_4 NPs correspond to the characteristics of standard Co_3O_4 . The lattice fringe of 0.47 nm is assigned to the (111) plane of Co_3O_4 as shown in Fig. S4 which displays uniformly

dispersed nanoparticles of Co_3O_4 with the average particle size of ca. 6 nm.

Fig. S4 TEM images of Co₃O₄ NPs (A, low magnification; B, high magnification)