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1 Organelle specificity, cell line specificity, and confounders of Raman
spectra

As Raman microscopy is conducted label-free, the image spectra obtained may potentially contain
signals specific for different biologically relevant factors as well as signals that are irrelevant or even
confounding. In fluorescence microscopy, conversely, one or few specific label(s) associated with
one condition and one factor (e.g. subcellular organelle) is given in one image. It is important to
notice that in a supervised classification scenario, Raman spectra may in principle be distinguishable
with respect to biologically relevant factors (e.g. cell type, subcellular organelle), while at the same
time being distinguishable with respect to irrelevant or confounding factors (e.g. date of experiment).
Correspondingly, in order to assess the distinguishability of different factors, we trained classifiers
and evaluated their accuracy in leave-one-sample-out validation in different settings:

(C1) Cell type specificity. We trained a six-class-classifier where the classes for organelle types
(nucleus, lipid droplets, rest) are further subdivided into cell-type specific classes. The resulting
classifier achieves an accuracy of 98%, for a complete confusion matrix refer to Supplementary
Figure 1.

(C2) Cell type specificity of spectra from non-cellular surroundings. Spectra from areas not covered
by any cell in five Raman images of HT29 cells along with corresponding spectra in six images
of MIA PaCa-2 cells were collected. A classifier to distinguish these spectra in the two types of
samples achieved an accuracy of 99%.

(C3) Confounder specificity of spectra from non-cellular surroundings. We extracted spectra from
areas not covered by any cell in Raman images of 26 MIA PaCa-2 cell samples, where 15
measurement were conducted on Day 1, and the reamining 11 conducted on Day 2. As it turns
out, the spectra from the two experimental dates can be distinguished with an accuracy of 96%.

(C4) ”Null experiment”. We trained a classifier on nucleus spectra of four HT29 cells vs. nucleus
spectra from four MIA PaCa-2 cells. The labels were shuffled by flipping the labels of two
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randomly selected cells of each class, resulting in an accuracy of 45%, matching the roughly
50% accuracy to be expected by chance. In particular, this supports the claim that the accuracies
observed above are not due to overfitting.
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Supplementary Figure 1: Row-by-row relative confusion matrix of a random forest trained on two
cell lines with three organelles each. The classes in this random forest are Nucleus, Lipid Droplets
and Rest, each class in group 1 from MIA PaCa-2 and group 2 from HT29 cells. The values were
calculated according to the concept of leave-one-sample-out cross-validation, the sensitivities can be
seen in the diagonal.
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2 Effect of background correction on segmentation

Several groups have shown that there is no or a weak fluorescence background in Raman measure-
ments of cells [3, 1] and that cluster analysis on normalized data allows a good distinction for a certain
number of cell compartments [2]. Nevertheless, we compared cluster analysis on baseline corrected
and uncorrected data and concluded that there are minor differences for our setup on cell measure-
ments (Supplementary Figure 2, Figure 3 in the main paper). No peaks are present in the region
selected for normalization and data analysis of the substrate.

Our baseline correction of Raman spectra from cell measurements in media was executed in two
steps. At first the water band at 1645 cm−1 and 3100-3600 cm−1 was subtracted and in the second
step the residual baseline was removed by a polynomial baseline correction. Afterwards the spectra
are normalized in a region between 700 cm−1 and 3100 cm−1. For the subtraction of the water band
endmembers of a Vertex Component Analysis (VCA) were calculated from a set of pure buffer spectra.
In a least square solution these endmembers were fitted to the single spectra and subtracted from them.
In the second step a sweep algorithm was applied on wavelet-denoised spectra (Daubechies wavelet
D4) to gain supporting points for the polynomial baseline correction. A fifth order polynomial was
fitted to these supporting points and substracted from the spectra.

Best matching clusters Fluorescence
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Supplementary Figure 2: Effect of background correction on segmentation. Panels A and B display
best matching clusters and fluorescence, respectively. Panels C and D show overlays between the best
matching cluster (green) and the corresponding thresholded fluorescence image (red) along with the
PCC between the two. The PCC values of .8 and .92 compare to PCCs of .79 and .93, respectively,
obtained for uncorrected spectra (see Figure 3 in the main paper).
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3 Dataset for nucleus and lipid droplet identification

Fluorescence-HCA colocalization

Overlap LD Overlap Nucleus

Supplementary Figure 3: Complete dataset used for the identification of nucleus and lipid droplets.
The left column displays overlays between the best matching cluster (green) and the corresponding
thresholded fluorescence (red) for lipid droplets, the right column shows the overlay for nucleus.
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4 Parameter-free extraction of training spectra

In this supplementary section, we provide details on the extraction of spectra for training supervised
classifiers. In our approach, the only input utilized for extracting training spectra are

• The dendrogram D and

• the fluorescence image I.

The output of the function consists of a set of training spectra. Extracting training spectra involves no
further parameters, in particular no fluorescence threshold or number of clusters.

When extracting training spectra from a fluorescence image I and spectral image J, we perform
hierarchical clustering using Ward’s method on the pixel spectra in J to obtain a dendrogram D. If
N denotes the number of pixels in J, dendrogram D is a binary tree with N leaf vertices and N− 1
internal vertices, i.e., 2N−1 vertices in total. As a notational convention, we let V denote the set of all
2N−1 vertices. Each vertex v ∈V is associated with a binary image G(v), which exhibits intensity 1
(white) at the coordinates of all pixel spectra at the leaf vertices below v, and intensity 0 (black) at all
other coordinates. The fluorescence image J can be turned into a binary image by setting a threshold
t, so that the thresholded image RI(t) has intensity 1 at all positions where the fluorescence intensity
in I exceeds t, and 0 at all other positions.

4.1 Determining a best matching cluster.

Our approach starts with determining a best matching cluster in D. To this end, all cluster images
G(v) for all possible v ∈ V constitute potential best matching clusters, as well as the thresholded
images RI(t) for all possible thresholds t constitute potential thresholds, where both v and t are to be
determined automatically without utilizing any further parameters. Note that for any given pair of a
vertex v and threshold t, we can determine the Pearson correlation PCC(v, t) between G(v) and RI(t)
using Equation (1) from the main paper. For pairs (v, t) where the images G(v) and RI(t) display highly
similar areas, PCC(v, t) will yield a correlation close to 1. If the cluster image and the thresholded
image disagree, the correlation will be close to 0 or even negative. To identify the highest possible
degree of colocalization between I and J, an optimal pair of vertex vopt and threshold topt are obtained
through

(vopt, topt) = argmaxv∈V,t PCCv,t . (1)

The vertex vopt obtained using Eqn. (1) is the formal definition of what is referred to as the best
matching cluster in the main paper. Due to the statistical origin of Pearson correlation – and as well-
established in the corresponding literature on colocalization between fluorescence images (References
1,26,27 in the main paper) – a value of PCC(v, t) close to 1 allows the interpretation that there is a
statistically significant high degree of agreement between I and J.

It is important to notice the following:

• No user-adjustable parameters are involved in determining the best matching cluster.

• Identification of the best matching cluster is performed separately for each fluorescence image
(i.e., fluorescently labelled organelle) for each sample.

• Once a vertex v has been identified with an organelle, v as well as all descendant vertices of v
in the dendrogram are removed and thus cannot be identified with other organelles.
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4.2 Obtaining training data from best matching clusters

In our approach, training data for a given subcellular organelle are obtained on the grounds of the
best matching cluster. More precisely, we extract training spectra from all positions where both the
thresholded fluorescence image GI(topt) = 1 and the cluster image R(vopt) = 1, corresponding to the
yellow pixels in panels C and D of Fig. 3 in the main paper.
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Supplementary Figure 4: Blue spectrum: Mean spectrum of training spectra obtained from colo-
calization of fluorescence and best-matching cluster. The spectra exhibit strong lipid bands at 1750
and 2850 cm−1. Red spectrum: Corresponding mean spectrum from fluorescence positions not colo-
calized with the best-matching cluster. Obviously, these spectra do not exhibit clear signals of lipid
droplets, as in particular the peak at the lipid band 1750 cm−1 is not present, and the peak at 2850 cm−1

only very weak. The shading of the spectra shows the standard deviation.

Note that red pixels in these overlap images correspond to pixels where fluorescence is above
threshold, i.e., R(vopt) = 1, but which are not covered by the best matching cluster. We do not include
such spectra in the training data set. The motivation to do so is that overlap between fluorescence and
Raman image will never be perfect due to at least three factors, namely (i) differences in confocal
volume between Raman and fluorescence microscopy, (ii) slight deviations in the z-layer, and (iii)
small distortions of the sample due to fluorescence staining. Consequently, some positions in border
regions of the organelles that exhibit fluorescence cover positions in the spectral image where the
organelle is actually not present. This will obviously lead to false training spectra, and reduce the
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accuracy of the resulting classifier. Overlap with the best matching cluster yields, conversely, training
spectra that exhibit a high degree of spectral consistency, so that these positions of misaligned overlap
can be expected not to be part of the best matching cluster.
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Supplementary Figure 5: Classification result of classifier trained on fluorescence above-threshold
positions directly in comparison with fluorescence labeling. The cell shown is the same cell as Fig. 3
in the main paper. (A): Classification result with nucleus positions indicated in blue and lipid droplets
in red. The lipid droplets close to the nucleus are obviously not well resolved, as well as larger regions
that are obviously not part of the nucleus are recognized as nucleus. This leads to a drop in the PCC
between the predicted lipid droplet regions and the respective fluorescence image (panel (B)) from .79
to .5 (see panel (C) for an overlay). The PCC between predicted nucleus and unthresholded nucleus
fluorescence drops from 0.96 to 0.79 (overlay shown in panel (D)).

Beyond the observed drop in accuracy, we assessed the influence of choosing overlap (“yellow”)
positions for training data compared to choosing all fluorescence foreground (“yellow and red”) po-
sitions as training data in further detail. The spectra shown in Figure 4 indicate that spectra in the
fluorescent non-overlap positions show no clear signals of lipid droplets. For either supervised classi-
fiers or regression based approaches, falsely assigned spectra in the training data will obviously lead
to weaker classifiers with reduced accuracy during cross-validation.

It is worthwhile to notice that high accuracies of classification are obtained only if the agreement
between the best matching cluster and the fluorescence image is high across all data sets in the train-
ing data. As can be seen from the cross validation for perturbed data Figure 5 of the main paper, a
low agreement between fluorescence and HCA will lead to low cross-validation accuracies.
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