## Electronic Supplementary Information

## Facile synthesis of porous bimetallic alloyed PdAg nanoflowers supported on reduced graphene oxide for simultaneous detection of ascorbic acid, dopamine, and uric acid

Li-Xian Chen, Jie-Ning Zheng, Ai-Jun Wang,\* Lan-Ju Wu, Jian-Rong Chen, Jiu-Ju Feng\*

College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321000, China \*Corresponding author: ajwang@znju.cn(AJW); jjfeng@zjnu.cn(JJF); Tel./Fax: +86 579 82282269.



**Fig. S1.** EDS pattern of PdAg NFs/rGO. Inset shows the mass and molar ratios of Pd to Ag.



Fig. S2. High-resolution C 1s XPS spectra of GO.



Fig. S3. Raman spectra (A) and TGA curves (B) of PdAg NFs/rGO (curve a) and GO (curve b).



Fig. S4. TEM image of PdAg nanocomposites obtained in the absence of rGO.



**Fig. S5.** TEM images of PdAg/rGO synthesized with different CTAB concentrations: (A) 0 mM, (B) 0.80 mM, and (D) 10 mM.



**Fig. S6.** Effects of pH on the (A) peak currents and (B) separations of the peak potentials ( $\Delta E_P$ ) of AA-DA, DA-UA, and AA-UA for the oxidation of 3.0 mM AA, 6.0  $\mu$ M DA, and 60.0  $\mu$ M UA in 0.1 M phosphate solution (pH 6.0).

| Modifiers               | Linear range (µM) |                  |               | Detection limit (µM) |                  |               | $\Delta E_{\rm p}~({\rm mV})$ |           |              |
|-------------------------|-------------------|------------------|---------------|----------------------|------------------|---------------|-------------------------------|-----------|--------------|
|                         | AA                | DA               | UA            | AA                   | DA               | UA            | AA–<br>DA                     | DA–<br>UA | Ref.         |
| PdAg/rGO                | 1.0~<br>2141.0    | 0.4~<br>96.0     | 1.0~<br>150.0 | 0.057                | 0.048            | 0.081         | 204                           | 128       | This<br>work |
| PdNPs/GR<br>/GS         | 100~<br>4000      | 0.5~15<br>20~200 | 0.5~<br>200   | 20                   | 0.1              | 0.17          | 252                           | 144       | [1]          |
| Pt/PMT/P<br>d           | 10~<br>160        | 0.05~1           | _             | 7                    | 0.008            | _             | 240                           | _         | [2]          |
| Pt/MWCN<br>T            | 24.5~<br>765      | 0.061~<br>7.03   | 0.455~<br>50  | 20                   | 0.0483           | 0.35          | 166                           | 120       | [3]          |
| ERGO                    | 500~<br>2000      | 0.5~60           | 0.5~60        | 0.5                  | 0.5              | 250           | 240                           | 130       | [4]          |
| MWCNT<br>@PDOP@<br>PtNP | _                 | $0.25 \sim 20$   | 0.3~13        | _                    | 0.08             | 0.12          | _                             | 140       | [5]          |
| NG                      | 5~<br>1300        | 0.5~<br>170      | 0.1~20        | 2.2                  | 0.25             | 0.045         | 220                           | 150       | [6]          |
| SWCNH                   | 30~<br>400        | 0.2~3.8          | 0.06~1<br>0   | 5                    | 0.06             | 0.02          | 152                           | 211       | [7]          |
| RGO–<br>AuNPs–<br>CSHMs | _                 | 0.5~<br>200      | 0.1~50        | _                    | $0.05 \sim 0.08$ | 0.05~<br>0.08 | _                             | 120       | [8]          |
| HNCMS                   | 100~<br>1000      | 3~70             | 5~30          | 0.91                 | 0.02             | 0.04          | 212                           | 136       | [9]          |
| MWCNT                   | 15.0~<br>800.0    | 0.5~<br>100.0    | 0.55~9<br>0.0 | 7.71                 | 0.31             | 0.42          | 205                           | 160       | [10]         |
| SZP/MB                  | _                 | 40~160           | 70~280        | _                    | 4.0 ± 0.2        | 3.6 ± 0.1     | 260                           | 170       | [11]         |

**Table S1.** Linear ranges and detection limits of different materials modifiedelectrodes for the selective detection of AA, DA, and UA.

 Table S2. Linear ranges and detection limits of different materials modified

 electrodes for the simultaneous detection of AA, DA, and UA.

| Modifiers                                     | Linear range (µM) |                |               | Detection limit (µM)                      |              |             | Peak potential<br>separation<br>(mV) |           | Ref.         |
|-----------------------------------------------|-------------------|----------------|---------------|-------------------------------------------|--------------|-------------|--------------------------------------|-----------|--------------|
|                                               | AA                | DA             | UA            | AA                                        | DA           | UA          | AA–<br>DA                            | DA–<br>UA |              |
| PdAg/rGO                                      | 1.0~411<br>0.0    | 0.05~11<br>2.0 | 3.0~18<br>6.0 | 0.185                                     | 0.017        | 0.654       | 186                                  | 136       | This<br>work |
| Pt/PMT/Pd                                     | 20~120            | 0.05~1         | _             | 6                                         | 0.009        | _           | _                                    | _         | [2]          |
| NG                                            | 10~600            | 1~140          | 2~160         | 3.5                                       | 0.28         | 0.57        | _                                    | —         | [6]          |
| RGO–<br>AuNPs<br>–CSHMs                       | _                 | 1~200          | 1~300         | _                                         | 0.3~0.<br>7  | 0.3~<br>0.7 | _                                    | _         | [8]          |
| SZP/MB                                        | 10~1600           | 6~100          | 22~35<br>0    | $\begin{array}{c} 8.3\pm0\\.1\end{array}$ | 1.7 ±0.<br>1 | 3.7 ± 0.2   | _                                    | _         | [11]         |
| Pd <sub>3</sub> Pt <sub>1</sub> /PD<br>DA–RGO | 40~1200           | 4~200          | 4~400         | 0.61                                      | 0.04         | 0.10        | 160                                  | 140       | [12]         |
| MWCNT<br>–PEDOT                               | 100~200<br>0      | 10~330         | 10~25<br>0    | 100                                       | 10           | 10          | 200                                  | 100       | [13]         |

## References

- X. Wang, M. Wu, W. Tang, Y. Zhu, L. Wang, Q. Wang, P. He and Y. Fang, J. Electroanal. Chem., 2013, 695, 10-16.
- 2. N. F. Atta and M. F. El-Kady, Sens. Actuators, B, 2010, 145, 299-310.
- 3. Z. Dursun and B. Gelmez, *Electroanalysis*, 2010, 22, 1106-1114.
- 4. L. Yang, D. Liu, J. Huang and T. You, Sens. Actuators, B, 2014, 193, 166-172.
- M. Lin, H. Huang, Y. Liu, C. Liang, S. Fei, X. Chen and C. Ni, *Nanotechnology*, 2013, 24, 065501.
- Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang and X.-H. Xia, Biosens. Bioelectron., 2012, 34, 125-131.
- 7. S. Zhu, H. Li, W. Niu and G. Xu, Biosens. Bioelectron., 2009, 25, 940-943.
- 8. X. Liu, L. Xie and H. Li, J. Electroanal. Chem., 2012, 682, 158-163.
- C. Xiao, X. Chu, Y. Yang, X. Li, X. Zhang and J. Chen, *Biosens. Bioelectron.*, 2011, 26, 2934-2939.
- 10. B. Habibi and M. H. Pournaghi-Azar, Electrochim. Acta, 2010, 55, 5492-5498.
- J. Argüello, V. L. Leidens, H. A. Magosso, R. R. Ramos and Y. Gushikem, *Electrochim. Acta*, 2008, 54, 560-565.
- 12. J. Yan, S. Liu, Z. Zhang, G. He, P. Zhou, H. Liang, L. Tian, X. Zhou and H. Jiang, *Colloids Surf.*, B, 2013, 111, 392-397.
- 13. K.-C. Lin, T.-H. Tsai and S.-M. Chen, Biosens. Bioelectron., 2010, 26, 608-614.