Supplemental Information For

Three-dimensional activated graphene networks–sulfonateterminated polymer nanocomposite as a new electrode material for sensitive determination of dopamine and heavy metal ions

Xiaoyan Yuan, Yijia Zhang, Lu Yang, Wenfang Deng, Yueming Tan*, Ming Ma*, Qingji Xie

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

E-mail address: <u>tanyueming0813@126.com</u> (Y. Tan); <u>mingma@hunnu.edu.cn</u> (M. Ma)

Scheme S1. Redox mechanism of DA.

Electrodes	Limit of	Liner range (M)	Reference
	detection (µM)		S
3DAGNs-STP/GCE	0.01	1.0×10 ⁻⁷ -3.2×10 ⁻⁵	
Arrays of recessed ring disk	0.02	1.0×10 ⁻⁷ -1.0×10 ⁻³	S1
Graphene modified GCE	2.64	4×10 ⁻⁶ -1×10 ⁻⁴	S2
Nitrogen doped graphene modified	0.25	5.0×10 ⁻⁶ -1.7×10 ⁻⁴	S3
electrode			
Silicon nanowire modified	0.04	3.0×10 ⁻⁷ -2.0×10 ⁻⁴	S4
electrode			
Au nanoplates and reduced	1.4	6.8×10 ⁻⁶ -4.1×10 ⁻⁵	S 5
graphene oxide (RGO) modified			
GCE			
Gold nanoparticle-sheathed glass	0.01	2.0×10 ⁻⁸ -5.6×10 ⁻⁶	S6
capillary nanoelectrode			
Graphene oxide-ferulic acid	0.19	6.0×10 ⁻⁷ -1×10 ⁻³	S7
modified GCE			

 Table S1. Comparison of the performance of 3DAGNs-STP/GCE with other electrodes for

 DA determination.

Sample	Added	Found	Recovery	R. S. D	
	(µM)	(µM)	(%)	(%)	
Urine #1	20.00	19.52	97.6	2.90	
Urine #2	20.00	18.42	92.1	4.45	
Urine #3	20.00	21.03	105	5.27	

 Table S2. Determination of DA in real samples (n=3).

Modified electrodes	Detection	References	
	Cd^{2+} (µg	Pb ²⁺ (µg	-
	L-1)	L-1)	
Bi/3DAGNs-STP/GCE	0.1	0.2	This work
Bi-coated carbon electrodes		0.3	S8
Bi nano-powder electrode	0.15	0.07	S9
Bi/poly(p-aminobenzene sulfonic acid) film electrode	0.63	0.8	S10
Nafion/2, 2-bipyridyl/bismuth composite film-coated	0.12	0.077	S11
glassy carbon electrode			
Photolithographically fabricated Bi sputtered electrode	1	0.5	S12
Bi-plated carbon paste mini-electrodes	0.1	0.2	S13
Bi-powder modified carbon paste electrode	1.2	0.9	S14
Bi-modified zeolite doped carbon paste electrode	0.08	0.1	S15
Bi-coated diamond-like carbon microelectrodes		4.4	S16

Table S3. Cd²⁺ and Pb²⁺ detection limits by anodic stripping techniques at Bi film modified electrodes.

	o · · · ·	o · · · · I			Cd ²⁺			Pb ²⁺		
	Original	Original	Added	Added	Found			Found		
Sample	Cd ²⁺	Pb ²⁺	Cd ²⁺	Pb ²⁺	ζ. Τ	Recovery	R.S.D.	ζ. Ι	Recovery	R.S.D.
	(µg L-1)	(µg L-1)	(µg L-1)	(µg L-1)	(μg L-	(%)	(%)	(µg L	(%)	(%)
					1)			1)		
Тар										
	-	1.82	10.00	10.00	10.30	103	3.08	11.20	94.8	4.21
water										
River										
water #1	1.50	4.23	10.00	10.00	11.2	97.3	4.16	13.39	94.1	3.35
River	2.25	4 97	10.00	10.00	11 84	96 7	4 13	15 21	102	2.97
water #2	2.20		10.00	10.00		20.1		10.21	=	

Table S4. Determination of Cd^{2+} and Pb^{2+} in real samples (*n*=3).

Fig. S1 TEM images of 3DAGNs.

Fig. S2 XRD pattern (a), nitrogen adsorption/desorption isotherm (b), and pore distribution (c) of 3DAGNs.

Fig. S3 (a) Time-dependent responses of resonant frequency shift (Δf_0) and motional resistance change (ΔR_1) for a 3DAGNs-STP modified PQC in stirred PBS (pH 7.0). (b) Cyclic voltammograms of 3DAGNs-STP/GCE, 3DAGNs/GCE, and bare GCE in 0.1 M PBS (pH 7.0). Scan rate: 50 mV s⁻¹.

Fig. S4 Scan rate dependence of cyclic voltammograms (a) and anodic peak currents (b) of bare GCE in 0.1 M PBS (pH 7.0) containing 0.2 mM DA.

Fig. S5 Scan rate dependence of cyclic voltammograms (a) and anodic peak currents (b) of 3DAGNs/GCE in 0.1 M PBS (pH 7.0) containing 0.2 mM DA.

Fig. S6 (a) Cyclic voltammograms of 3DAGNs/GCE and 2DGNs/GCE in 0.1 M PBS (pH 7.0) containing 0.2 mM DA. (b) Cyclic voltammograms of 3DAGNs-STP/GCE and 2DGNs-STP/GCE in 0.1 M PBS (pH 7.0) containing 0.2 mM DA. Scan rate: 50 mV s⁻¹.

Fig. S7 (a) Cyclic voltammograms of 3DAGNs-STP/GCE and 3DAGNs/GCE in 0.1 M PBS (pH 7.0) containing 2 mM AA. (b) Cyclic voltammograms of 3DAGNs-STP/GCE and 3DAGNs/GCE in 0.1 M PBS (pH 7.0) containing 0.5 mM UA. Scan rate: 50 mV s⁻¹.

Fig. S8 The effect of pre-concentration time on the differential pulse stripping current for 20 μ M DA at 3DAGNs-STP/GCE.

Fig. S9 The effect of Bi^{3+} concentration (a), solution pH (b), deposition potential (c), and deposition time (d) on the stripping current of Cd²⁺ and Pb²⁺ at 3DAGNs-STP/GCE in 0.1 M acetate buffer solution containing 50 µg L⁻¹ each of Cd²⁺ and Pb²⁺. Other experimental conditions are the same as in Fig. S9.

Fig. S10 Differential pulse stripping voltammograms (a) and calibration curve (b) 3DAGNs-STP/GCE for Cd²⁺ in 0.1M acetate buffer solution (pH 4.0) in the presence of 500 μ g L⁻¹ Bi³⁺. Deposition potential: -1.1 V, deposition time: 300 s.

Fig. S11 Differential pulse stripping voltammograms (a) and calibration curve (b) 3DAGNs-STP/GCE for Pb²⁺ in 0.1M acetate buffer solution (pH 4.0) in the presence of 500 μ g L⁻¹ Bi³⁺. Deposition potential: -1.1 V, deposition time: 300 s.

References

- [S1] C. Ma, N. M. Contento, L. R. Gibson and P. W. Bohn, Anal. Chem. 2013, 85, 9882.
- [S2] Y. -R. Kim, S. Bong, Y. -J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim and H. Kim, Biosens. Bioelectron. 2010, 25, 2366.
- [S3] Z. Sheng, X. Zheng, J. Xu, W. Bao, F. Wang and X. Xia, *Biosens. Bioelectron.* 2012, 34, 125.
- [S4] S. Su, X. Wei, Y. Guo, Y. Zhang, Y. Su, Q. Huang, C. Fan and Y. He, Part. Part. Syst. Charact. 2013, 30, 326.
- [S5] C. Wang, J. Du, H. Wang, C. Zou, F. Jiang, P. Yang and Y. Du, Sens. Actuat. B: Chem. 2014, 204, 302.
- [S6] Y. Liu, Q.Yao, X. Zhang, M. Li, A. Zhu and G. Shi, Biosens. Bioelectron. 2015, 63, 262.
- [S7] H. S. Han, H. Seol, D. H. Kang, M. S. Ahmed, J.-M. You and S. Jeon, Sens. Actuat. B: Chem. 2014, 204, 289.
- [S8] J. Wang, J. Lu, S. B. Hočevar, P. A. M. Farias and B. Ogorevc, Anal. Chem. 2000, 72, 3218.
- [S9] G. J. Lee, H. M. Lee and C. K. Rhee, Electrochem. Commun. 2007, 9, 2514.
- [S10] Y. Wu, N. B. Li and H. Q. Luo, Sens. Acuators B: Chem. 2008, 133, 677.
- [S11] F. Torma, M. Kádár, K. Tóth and E. Tatár, Anal. Chim. Acta. 2008, 619, 173.
- [S12] C. Kokkinosa, A. Economoua and I. R. C. E. Efstathioua, *Electrochim. Acta* 2008, 53, 5294.
- [S13] L. Baldrianova, I. Svancara and S. Sotiropoulos, Anal. Chim. Acta 2007, 599, 249.
- [S15] S. B. Hočevar, I. Švancara, K. Vytřas and B. Ogorevc, *Electrochim. Acta* 2005, 51,

706.

- [S16] L. Cao, J. Jia and Z. Wang, *Electrichim. Acta* 2008, **53**, 2177.
- [S17] V. Rehacek, V. Hotovy and M. Vojs, Sens. Acuators B: Chem. 2007, 127, 193.