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1 Characteristics of ion-current fluctuation

If the observed ion current, jk, is sampled at rate fs = 1/∆t (∆t is the
sampling period) the average current for a data record taped for a period
T = NT∆t reads

jav(T ) =
1

NT

NT∑
k=1

jk . (1)

We also define the partial average for the record by using only the data that
start from time τ = Mτ∆t, where Mτ = 0, 1, . . . , NT − 1,

jav(τ, T ) =
1

NT −Mτ

NT−Mτ∑
k=1

jk+Mτ . (2)

Clearly, jav(T ) = jav(0, T ).
The auto-correlation function calculated for the data record is defined as

follows,

R(τ, T ) =
1

NT −Mτ

NT−Mτ∑
k=1

[
jk − jav(T )

][
jk+Mτ − jav(τ, T )

]
. (3)
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With the above definition, the squared standard deviation of the ion current,
σ2
j , is equal to the auto-correlation function at zero time shift,

σ2
j = R(0, T ) . (4)

The power spectral density (PSD) of a signal is formally defined as the
Fourier transform of its auto-correlation function, R(τ) ≡ R(τ, T → ∞),

g(ω) =
1

π

∫ +∞

0

R(τ) cos(ωτ)dτ . (5)

Below, we will also use an alternative definition of the power spectral density
by using the temporal frequency f = ω/2π instead of the angular frequency
ω,

G(f) ≡ 4πg(2πf) . (6)

Then, we define the finite-interval power spectral density as follows

g(ω, τmax, T ) =
1

π

∫ τmax

0

R(τ, T ) cos(ωτ)dτ , (7)

so that

lim
τmax→∞

[
lim
T→∞

g(ω, τmax, T )
]

= g(ω), (8)

assuming that integrals and limits exist. If the correlation function decays
sufficiently fast by increasing τ and if the correlation time of the process is
smaller than τmax ≪ T , then one may expect that g(ω, τmax, T ) ≈ g(ω).

The auto-correlation function of the ion-current record, (3), is defined at
discrete time shifts, τl = l∆t, l = 0, 1, . . . ,Mτ , as

RT
k ≡ R(τk, T ) . (9)

If a linear interpolation between the time points is assumed, then the auto-
correlation function may be continuously represented over the interval τ ∈
[0, τmax], where τmax = Mτ∆t, as

R(τ, T ) ≈
Mτ−1∑
l=0

[(
RT

l+1 −RT
l

)τ − τl
∆t

+RT
l

]
rect

(
τ − τl
∆t

)
,

(10)
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where rect(x) = θ(x)− θ(x− 1) is the rectangular function on interval [0, 1]
and θ(x) the Heaviside step function. Then, the PSD at the characteristic
frequencies may be approximately calculated as follows

g(ωl, τmax, T ) ≈ ∆t

π
sinc

(
ωl∆t

2

)Mτ−1∑
k=0

RT
k+1 +RT

k

2
cos

[
ωl

(
τk +

∆t

2

)]
+

+
∆t

π
sinc(1)

(
ωl∆t

2

)Mτ−1∑
k=0

RT
k+1 −RT

k

2
sin

[
ωl

(
τk +

∆t

2

)]
(11)

ωl =
2π

∆t
l ; l = 0, 1, . . . ,Mτ (12)

Here, sinc (x) = sin(x)/x and sinc(1) (x) = [x cos(x)− sin(x)]/x2.

2 Filter and sampling corrections

In the electrophysiology experiments, the ion-current signal is filtered by an
analogous low-pass linear filter and then sampled at a specific rate, fs =
1/∆t. The sampling procedure consists of averaging a signal for the period
∆t and, thus, is also a linear filter applied after the first analogous one.
The average value of the ion-current signal, jav, is not affected by a linear
filter whereas the dispersion, the auto-correlation function, and the PSD are
modified by both filters. If the transfer function (its Fourier transform) of
the analogous filter is Ha(ω) and that of the sampling filter Hs(ω), then the
relation between the PSD of the original ion current, go(ω), and the one of
the signal after successive application of the two filters reads,

g(ω) = go(ω)|Ha(ω)|2|Hs(ω)|2 . (13)

A 4-order (4-pole) low-pass Bessel filter is used in the current measure-
ments. The transfer function of the Bessel filter of order n is designed as
follows,

Hn(ω) =
θn(0)

θn(ıω/ω0)
, (14)

where θn(x) is the reverse Bessel polynomial of order n; ω0 is a frequency
chosen to give the desired cut-off frequency. For the 4-order low-pass Bessel
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filter, θn(x) = x4 +10x3 +45x2 +105x+105, and the absolute square of the
transfer function reads,

|Ha(ω)|2 =
11025(

ω
ω0

)8
+ 10

(
ω
ω0

)6
+ 135

(
ω
ω0

)4
+ 1575

(
ω
ω0

)2
+ 11025

.(15)

Here, ω0 = 2πfc/xc, where fc is the cutoff frequency, xc ≈ 2.114 the scaling
factor determined by the following condition, |Ha(2πfc)|2 = 1/2.

The absolute square of the PSD of the sampling filter is

|Hs(ω)|2 =

(
sin
(
ω∆t
2

)
ω∆t
2

)2

, (16)

where ∆t is the sampling interval.
Note that formally at small frequencies, ω ≈ 0, the transfer functions are

close to 1 and do not modify the PSD,

g(ω)|ω≈0 ≈ go(ω) . (17)

At large frequencies, ω > ω0 ; ω > 1/∆t, the original PSD is strongly
reduced by a factor ω10,

g(ω)|ω→∞ ∼ go(ω)
1

ω10
. (18)

Thus, if the correlation time τ of the ion-current signal, which determines
the width of the PSD, is close to or smaller than the sampling interval ∆t
or the inverse filter cutoff frequency fc, then corrections associated with the
filters are very important for the PSD analysis.

3 Data analysis protocol

Selection of ion-current data records. For each concentration of a sub-
strate one selects 3-5 independent ion-current records, lasting each T seconds.
T must be much larger than the typical correlation time τc of the blockages
due to substrate; if the latter is less than few milliseconds the former may
be 5-10 sec. One has to make sure that the selected records are free from an
apparent external noise, like symmetric spikes, etc.
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Average current. At every substrate concentration, c, one calculates the
average current jav for each data record by using Eq. (1). Then, the mean
value and the error estimate of the average current are computed for every
concentration, jav(c). Thus, the shift of the average ion current at concen-
tration c is given by

⟨∆j⟩ (c) = jav(c)− jav(0) . (19)

Ion-current frequency histogram. At every substrate concentration,
one calculates the ion-current frequency histogram. At zero substrate con-
centration, the histogram usually contains a single peak corresponding to
the ion current through open channel. If the channel closes spontaneously,
a secondary peak (or peaks) may appear. By comparing the histogram with
and without a substrate the secondary peak due to the channel blockages
by the substrate molecule (different from the one due to channel gating )
might be located. Once the secondary peak is identified, the shift of its po-
sition with respect to the position of the main peak provides an estimate to
the ∆j value, i.e., the absolute difference of the average current in the open
monomer channel and that in the blocked one at the given applied potential
(we assume that the concentration is small enough, so that the probability
of simultaneous blockages of two monomer channels in the trimer is negli-
gible). If ∆j is determined, Methods 1 or 4 are applicable to extract the
kinetic parameters of the channel blocking. However, if the blockage events
are fast enough the secondary peak may disappear, and only the asymmetry
of the histogram is evident. In the latter case, ∆j is not measurable directly,
and Method 2 or 3 should be used to determine it together with the kinetic
parameters of the channel blocking.

Auto-correlation function and PSD. At every substrate concentra-
tion, c, one calculates the autocorrelation function, R(τ, T ), and the PSD
G(f, τmax, T ), for each data record by using Eqs. (3), (11), (6). τmax must
be much larger than the typical correlation time τc of the blockages due to
substrate but smaller than T ; if τc is smaller than few milliseconds, τmax may
be equal to 20-100 ms.

Background and PSD of the blocking signal. The ion-current fluctu-
ations for the open channel without a substrate represent the background.
One computes the PSD of the background, Gb(f), by averaging the PSDs
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for the data records at c = 0. Successively, the PSD of the blocking signal
is calculated for every substrate concentration and for each data record by
subtracting the PSD of the background,

Gs(f, c) = G(f, c)−Gb(f) . (20)

The latter relation requires the non-trivial assumption that the ion-current
fluctuations in an open channel do not correlate with the current fluctuations
due to channel blocking by substrate molecules.

Frequency range. By comparing the signal PSDs, Gs(f), for the same
substrate concentration but different data records one notes that at small
frequencies (below a certain fmin ) they differ significantly while at f ≥ fmin

they well coincide within the statistical errors. This low-frequency difference
may come from slow incontrollable changes of the external conditions (e.g.,
temperature) but also from infrequent spontaneous channel gating. The up-
per frequency, fmax, is selected so that for f > fmax the absolute value of
the PSD is close to or smaller than the statistical errors. The choice of the
frequency range, f ∈ [fmin, fmax], therefore, identifies statistically significant
values of the PSD and gets rid of the slow incontrollable processes.

PSD fitting. At every substrate concentration, c, and for each data record
one fits the model (filters-corrected) PSD,

Gm(f) =
a

1 + (2πfτc)2
|Ha(2πf)|2|Hs(2πf)|2, (21)

to the signal PSD, Gs(f), in the frequency range f ∈ [fmin, fmax] , and obtains
the Lorenzian factor a and the correlation time τc as well as the estimates of
their uncertainties. Successively, the parameters are averaged over the data
records for the same concentration of the substrate.

The weighted least squares method is used for the fitting. One minimizes
the following scoring function,

S =
∑

fl∈[fmin,fmax]

[Gm(fl)−Gs(fl)]
2

σ2(fl)
, (22)

fl =
1

∆t
l ; l = 0, 1, . . . ; (23)
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where the frequency dependence of the weight function, σ2(f) = Gm(f), is
selected to make more or less uniform the contribution of each fl point to
the sum of Eq. (22). We found that the choice σ2(f) = Gm(f) is better
than σ2(f) = 1 and than σ2(f) = G2

m(f), as the former overweights the
smaller-frequency region while the latter overestimates the higher frequency
domain.

To estimate the fitting error (uncertainty) of the parameters, δa and δτc
are determined so that

min
τ ′

S(a± δa, τ ′) = 2Smin , (24)

min
a′

S(a′, τc ± δτc) = 2Smin . (25)

Here, Smin = mina′,τ ′ S(a
′, τ ′) = S(a, τc) is the minimum value of the scoring

function calculated at the optimal values of a and τc.

Kinetic parameters. Finally, one uses one or, independently, several of
the methods discussed in Section Theory to determine the kinetic parameters
of the ion current blocking due to substrate molecules.

4 Double-logarithmic scale PSD plots
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Figure 1: The signal PSD of the ion current fluctuations sampled at 50 kHz
rate (A) and at 250 kHz rate (B). The thick solid line is the fit by the filters-
corrected Lorenzian model; the dased line is the same Lorenzian model but
corrected for the Bessel filter only, i.e., without the sampling correction. The
dotted line in (B) is the fit by the pure Lorentzian filters-incorrected model.
These data are plotted in linear scale in Figure 3.
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